Algebraic Integrable Systems, Abelian Varieties and Kummer Surfaces

A. Lesfari
Department of Mathematics Faculty of Sciences
University of Chouaib Doukkali B.P. 20, El Jadida, Morocco.
Lesfari.ahmed@yahoo.fr.

Abstract- In the present paper, we discuss an interesting interaction between complex algebraic geometry and dynamical systems. We construct a new integrable system in five unknowns having three quartics invariants. This system is interesting because is the first known algebraic completely integrable system in C5 that can be integrated in genus 2 hyperelliptic functions and it establishes some correspondences for old and new integrable systems. The paper is supported by two appendices which contain some basis concepts concerning abelian varieties and hamiltonian systems.

Keywords- Hamiltonian; Integrable Systems

I. INTRODUCTION

The concept of algebraic integrability varies through the literature. In this paper, we shall be concerned with finite dimensional algebraic completely integrable systems. A dynamical system is algebraic completely integrable (in the sense of Adler-van Moerbeke\cite{1}) and can be linearized on a complex abelian torus \(\mathbb{C}^n/\text{lattice}\) (abelian variety). The invariants (often called first integrals or constants) of the motion are polynomials and the phase space coordinates (or some algebraic functions of these) restricted to a complex invariant variety defined by putting these invariants equals to generic constants, are meromorphic functions on an abelian variety. Moreover, in the coordinates of this abelian variety, the flows (run with complex time) generated by the constants of the motion are straight lines. However, besides the fact that many hamiltonian completely integrable systems posses this structure, another motivation for its study which sounds more modern is: algebraic completely integrable systems come up systematically whenever you study the isospectral deformation of some linear operator containing a rational indeterminate. Indeed a theorem of Adler-Kostant-Symes\cite{14} applied to Kac-Moody algebras provides such systems which, by a theorem of van Moerbeke-Mumford\cite{22}, are algebraic completely integrable. Therefore there are hidden symmetries which have a group theoretical foundation. Also some interesting integrable systems appear as coverings of algebraic completely integrable systems\cite{3,10}. The invariant varieties are coverings of abelian varieties and these systems are called algebraic completely integrable in the generalized sense. The concept of algebraic complete integrability is quite effective in small dimensions and has the advantage to lead to global results, unlike the existing criteria for real analytic integrability, which, at this stage are perturbation results. In fact, the overwhelming majority of dynamical systems, hamiltonian or not, are non-integrable and possess regimes of chaotic behavior in phase space. In the present paper, we discuss an interesting interaction between complex algebraic geometry and dynamical systems. We construct a new integrable system in five unknowns having three quartics invariants. This system is interesting because is the first known algebraic completely integrable system in \(\mathbb{C}^5\), it can be integrated in genus 2 hyperelliptic functions and it establishes some correspondences for old and new integrable systems. The paper is organized as follows:

a) It was shown\cite{11}, that there exists another case for which the hamiltonian (2) (related to the Yang-Mills system for a field with gauge group \(SU(2)\)) is Liouville integrable, but no description of solutions is given. When one examines all possible singularities, one finds that it possible for the variable \(q_3\) to contain square root terms of the type \(t^{1/2}\), which are strictly not allowed by the so called Painlevé test. However, these terms are trivially removed by introducing some new variables \(z_1, \ldots, z_5\) (see section 3), which restores the Painlevé property to the system. We show in section 2, that the system (4) admits Laurent solutions in \(t^{1/2}\), depending on 3 free parameters: \(u, v, w\). These pole solutions restricted to the surface \(A(6)\) are parameterized by two smooth curves \(C_{t=E_4}^{1/4} \) of genus 4. Applying Vanhaecke’s approach\cite{23}, we show that the invariants (3) and (5) can be expressed in terms of meromorphic functions (having the property that they behave like \(1/t\) when the Laurent solutions (7) are substituted into them), giving a quartic equation defining the Kummer surface \(K_A\) of the invariant manifold \(A\) as a surface in \(\mathbb{P}^3\). We solve the system (4) in terms of genus 2 hyperelliptic functions.

b) In section 3, we show that the system (4) studied in the last section is part of a new and interesting integrable system of differential equations (10) in five unknowns having three quartics invariants (11). We show that the complex affine variety \(B(12)\) defined by putting these invariants equal to generic constants, is a double cover of the Kummer surface \(K_B\) and the system (10) can be integrated in genus 2 hyperelliptic functions. We make a careful study of the algebraic geometric aspect of the affine variety \(B(12)\) of the extended system (10). We find via the Painlevé analysis the principal balances of the...
Hamiltonian field defined by the Hamiltonian. To be more precise, we show that the extended system (10) possesses Laurent series solutions in t, which depend on 4 free parameters: α, β, γ and θ. These meromorphic solutions restricted to the surface $B(12)$ are parameterized by two isomorphic smooth hyperelliptic curves H_{+} and H_{-} of genus 2 that intersect in only one point at which they are tangent to each other. The affine variety $B(12)$ is embedded into \mathbb{P}^2 and completes into an abelian variety \tilde{B} (the Jacobian of a genus 2 curve) by adjoining a divisor $D = H_{+} + H_{-}$. The latter has geometric genus 5 and $S = 2D$ (very ample) has genus 17. The flow (10) evolves on \tilde{B} and is tangent to each hyperelliptic curve H_{\pm} at the point of tangency between them. Consequently, the system (10) is algebraic integrable (the first known a.c.i. system in five variables). Applying the method explained in Piovan [20], we show that the invariant variety $A(6)$ can be completed as a cyclic double cover \tilde{A} of the Jacobian of a genus curve, ramified along the divisor $H_{+} + H_{-}$. Moreover, \tilde{A} is smooth except at the point lying over the singularity (of type A_3) of $H_{+} + H_{-}$ and the resolution \tilde{A} of \tilde{A} is a surface of general type with invariants: Euler characteristic of $\tilde{A} = \chi(\tilde{A}) = 1$ and geometric genus of $\tilde{A} = p_{g}(\tilde{A}) = 2$. Consequently, the system (4) is algebraically completely integrable in the generalized sense. Finally, we show that the extended system (10) includes some new and known integrable systems. In particular, it shows that the system (4) is intimately related to the potential obtained by Ramani, Dorizzi and Grammaticos [21].

c) The paper is supported by two appendices which contain some basic concepts concerning abelian varieties and Hamiltonian systems.

II. A QUARTIC POTENTIAL

In this section, we consider the Yang-Mills system for a field with gauge group $SU(2)$:

$$D_j F_{jk} = \partial_j F_{jk} + [A_j, F_{jk}] = 0,$$

where $F_{jk}, A_j \in T_{s}SU(2), 1 \leq j, k \leq 4$ and $F_{jk} = \partial_j A_k - \partial_k A_j + [A_j, A_k]$. In the case of homogeneous double-component field, the equations become

$$D_j U_j = \partial_j U_j + [A_j, U_j] = 0, \quad D_j U_j = \partial_j U_j + [A_j, U_j] = 0,$$

where U_j are $SU(2)$-generators (i.e., they satisfy commutation relations: $n_1 = [n_2, [n_1, n_2]], n_2 = [n_1, [n_2, n_1]]$). The system becomes

$$\partial^2 U_1 + U_1 U_2^2 = 0,$$

$$\partial^2 U_2 + U_2 U_1^2 = 0.$$

By setting $U_j = q_j \frac{\partial q_j}{\partial t} = p_j, j = 1,2$, Yang-Mills equations are reduced to Hamiltonian system with the Hamiltonian

$$H = \frac{1}{2} (p_{1}^2 + p_{2}^2 + q_{1}^2 q_{2}^2)$$

The symplectic transformation

$$p_1 \leftrightarrow \sqrt{2} (p_1 + p_2), \quad p_2 \leftrightarrow \sqrt{2} (p_1 - p_2),$$

$$q_1 \leftrightarrow \frac{1}{2} (4q_1 + iq_2), \quad q_2 \leftrightarrow \frac{1}{2} (4q_1 - iq_2).$$

takes this Hamiltonian into

$$H = \frac{1}{2} (p_{2}^2 + p_{1}^2) + \frac{1}{4} q_{1}^2 + \frac{1}{4} q_{2}^2 + \frac{1}{2} q_{1}^2 q_{2}^2.$$

We start with the Hamiltonian

$$H = \frac{1}{2} (p_{2}^2 + p_{1}^2 + a_{1} q_{1}^2 + a_{2} q_{2}^2) + \frac{1}{2} q_{1}^2 + \frac{1}{2} a_{1} q_{1}^2 +$$

$$\frac{1}{2} a_{2} q_{1}^2 q_{2}^2.$$

Note that if $a_{1} = a_{2} = 0$ and $a_{2} = a_{4} = 1$, we obtain the Hamiltonian (1). It has been shown [6] that the general solutions of the equations of motion for Hamiltonian (2) have the Painlevé property (i.e., that they admit only poles in the complex time variable) if i) $a_1 = a_2, a_2 = a_4 = 1$ and ii) $a_1 = a_2, a_4 = 1, a_3 = 3$. In the case i), the second integral has the form

$$H_2 = p_2 q_1 - p_1 q_2,$$

whereas in the case ii) the second integral is

$$H_2 = p_2 q_1 - q_2.$$

In [11] it was shown that if $a_2 = 4a_1 \equiv 1a, a_4 = 16, a_6 = 4, \ldots$, then

1 i.e., dimensional reduction. The self-dual Yang-Mills (SDYM) equations is a universal system for which others reductions include all classical tops from Euler to Kowalewski (0+1-dimensions), K-dV, Nonlinear Schrödinger, Sine-Gordon, Toda lattice and N-waves equations (1+1-dimensions), KP and D-S equations (2+1-dimensions), etc...
The functions H_1 and H_2 commute:

$$\{H_1, H_2\} = \sum_{k=1}^4 \left(\frac{\partial H_1}{\partial x_k} \frac{\partial H_2}{\partial x_{k+1}} - \frac{\partial H_1}{\partial x_{k+1}} \frac{\partial H_2}{\partial x_k} \right) = 0.$$

The system (4) is weight-homogeneous with q_1, q_2 having weight 1 and p_1, p_2 weight 2, so that H_1 and H_2 have weight 4 and 5 respectively. When one examines all possible singularities, one finds that it possible for the variable q_2 to contain square root terms of the type \sqrt{t}, which are strictly not allowed by the Painlevé test. However, these terms are trivially removed by introducing some new variables z_1, \ldots, z_5 (see section 3), which restores the Painlevé property to the system.

Let \mathcal{A} be the affine variety defined by

$$\mathcal{A} = \bigcap_{k=1}^4 \{ z \in \mathbb{C}^4 : H_k(z) = b_k \},$$

where $(b_1, b_2) \in \mathbb{C}^2$. Since \mathcal{A} is the fibre of a morphism from \mathbb{C}^4 to \mathbb{C}^2 over $(b_1, b_2) \in \mathbb{C}^2$, for almost all b_1, b_2, therefore \mathcal{A} is a smooth affine surface.

Proposition 2.1 The system (4) admits Laurent solutions in $t^{1/2}$, depending on 3 free parameters: u, v and w. These solutions restricted to the surface $\mathcal{A}(6)$ are parameterized by two smooth curves $\mathcal{C}_\varepsilon = f(8)$ of genus 4.

Proof. The system (4) possesses 3-dimensional family of Laurent solutions (principal balances) depending on three free parameters u, v and w. There are precisely two such families, labeled by $\varepsilon = \pm i$, and they are explicitly given as follows:

$$q_1 = \frac{1}{\sqrt{2}} \left(u - \frac{1}{2} u^2 t + v t^2 + u^3 \left(-\frac{11}{16} u^3 + \frac{1}{4} au + v \right) t^3 \right.$$

$$+ \frac{u}{4} \left(\frac{11}{16} u^3 - a u^4 + \frac{1}{2} u^2 v + \frac{1}{3} a u - \frac{28\sqrt{3}}{2} w \right) t^4 + \cdots),$$

$$q_2 = \frac{e^{i\theta}}{\sqrt{2}} \left(1 + u^2 t + \frac{1}{3} (2a - 3u^4) t^2 + \frac{1}{8} u (24v - u^4) t^3 - 2\varepsilon \sqrt{2w} t^4 + \cdots \right),$$

$$p_1 = \frac{1}{\sqrt{2}} \left(-\frac{1}{2} u - \frac{1}{4} u^2 t + \frac{1}{2} u^2 v + \frac{1}{2} u^3 \left(-\frac{11}{16} u^3 + \frac{1}{8} a u + v \right) t^3 \right.$$

$$+ \frac{u}{2} \left(\frac{11}{16} u^3 - a u^4 + \frac{3}{2} u^2 v + \frac{1}{4} a u - \frac{28\sqrt{3}}{2} w \right) t^4 + \cdots),$$

$$p_2 = \frac{e^{i\theta}}{u^2} \left(-1 + \frac{1}{2} (2a - 3u^4) t^2 + \frac{1}{4} u (24v - u^4) t^3 - 6\varepsilon \sqrt{2w} t^4 + \cdots \right).$$

These formal series solutions are convergent as a consequence of the majorant method. By substituting these series in the constants of the motion $H_1 = b_1$ and $H_2 = b_2$, one eliminates the parameter w linearly, leading to an equation connecting the two remaining parameters u and v:

$$2v^2 + \frac{5}{2} (15u^4 - 8\varepsilon) uv - \frac{219}{32} u^{10} + \frac{7}{6} au^6 + \frac{2}{9} (a^2 + 9b_1) u^2 - \varepsilon \sqrt{2b_2} = 0.$$

According to Hurwitz' formula, this defines two smooth curves $\mathcal{C}_\varepsilon (\varepsilon = \pm i)$ of genus 4, which establishes the proposition.

1 Recall that a system $\dot{x} = f(x)$ is weight-homogeneous with a weight v_x going with each variable x_k if $f_k(x, x_1, \ldots, x_k) = x_k v_x f(x, x_1, \ldots, x_k)$ for all $x_k \in \mathbb{C}$.

In section 3 (proposition 3.5), we describe the role played by the curves $C_8 (8)$ in the construction of a compactification of the variety $A(6)$.

We show now that the functions
\[f_1 = q_1^2, \quad f_2 = q_2, \quad f_3 = 2q_1^2q_2^2 + p_1^2, \]
can be used to linearize the problem in terms of genus 2 hyperelliptic functions. Note that these functions behave like $1/t$ when the Laurent solutions (7) are substituted into them.

Proposition 2.2 The invariants (3) and (5) can be expressed in terms of the functions $1, f_1, f_2, f_3$ giving a quartic equation defining the Kummer surface K_A of the invariant manifold as a surface in \mathbb{P}^3. The system of differential equations (4) can be integrated in terms of genus 2 hyperelliptic functions.

Proof. To construct explicitly the Kummer surface K_A, we use the invariants $H_2 (3), H_2 (5)$ and the functions f_1, f_2, f_3 defined above. Indeed, we may solve (5) in p_2, substitute the result into equation (3) and upon expressing q_1^2, q_2, p_1^2, in terms of f_1, f_2, f_3, one then finds a quartic equation
\[P(f_2, f_1) f_2^2 + Q(f_1, f_1) f_2 + R(f_2, f_1) = 0, \]
for the Kummer surface where
\[P(f_1, f_1) = 2(f_1 + f_2^2), \]
\[Q(f_1, f_2) = f_1(f_1^2 + 2αf_1 - 4b_1) + 4f_2(αf_1f_2 + b_1), \]
\[R(f_2, f_1) = 2(4b_1 + a^2)f_1 f_2 - 4b_2(f_1 + 4f_2^2 + α)f_1f_2 + \]
\[2b_2^2. \]

Applying Vanhaecke’s approach [23] (see for instance theorem 9 on p. 278), we set
\[f_2 = q_1 = μ_1 + μ_2, \]
\[f_1 = q_1^2 = -4μ_1μ_2, \]
\[p_2 = μ_1 + μ_2, \]
\[q_1p_4 = -2(μ_1μ_2 + μ_1μ_2). \]

The latter equation together with the second implies that
\[p_2^2 = \frac{(μ_1μ_2 + μ_1μ_2)^2}{μ_1μ_2}. \]

In term of these new variables, equations (3) and (5) take the following form
\[(μ_1 - μ_2)(μ_2(μ_1^2) - μ_1(μ_2^2)) \]
\[+ 4μ_1μ_2(2μ_1^2 + 2μ_1μ_2 + 2μ_1μ_2 + 2μ_1μ_2 + 2μ_1^2 + αμ_1 + \]
\[αμ_1μ_2 + αμ_2)^2 \]
\[- 2b_1μ_1μ_2 = 0, \]
\[(μ_1 - μ_2)(μ_1^2(μ_1^2) - μ_1^2(μ_2^2)) \]
\[+ 4μ_1μ_2(μ_2(μ_1^2) + μ_2(μ_2^2)) + b_2μ_1μ_2 = 0. \]

These equations are solved linearly for $(μ_1^2)^2$ and $(μ_2^2)^2$ as
\[(μ_1^2)^2 = \frac{p_4(μ_1^2 - 4μ_1^2 + 2b_1μ_1 + b_2)}{μ_1^2 - μ_2^2}, \]
\[(μ_2^2)^2 = \frac{p_4(μ_2^2 - 4μ_2^2 + 2b_1μ_2 + b_2)}{μ_1^2 - μ_2^2}, \]

which leads immediately to
\[\frac{dμ_1}{\sqrt{F_6(μ_1)}} - \frac{dμ_2}{\sqrt{F_6(μ_2)}} = 0, \]
\[\frac{dμ_1}{μ_1^2} - \frac{dμ_2}{μ_2^2} = dt, \]
where $P_6(μ)$ is a polynomial of degree 6 of the form
\[P_6(μ) = μ(-8μ^5 - 4αμ^3 + 2b_1μ + b_2). \]
These equations can be integrated by means of the Abel transformation $\mathcal{H} \to \text{Jac}(\mathcal{H})$, where the hyperelliptic curve \mathcal{H} of genus 2 is given by an equation

$$w^2 = F_0(\mu).$$

Consequently, the equations (4) are integrated in terms of genus 2 hyperelliptic functions. This ends the proof of the proposition.

III. A FIVE-DIMENSIONAL ALGEBRAIC COMPLETELY INTEGRABLE SYSTEM

In this section, we show that the system (4) is part of a new system of differential equations in five unknowns having three quartics invariants (constants of motion). This extended system is algebraic completely integrable (the first known a.c.i. system in five variables) and also include some others integrable systems. Let

$$\varphi : A \to \mathbb{C}^5, (q_1, q_2, p_1, p_2) \mapsto (z_1, z_2, z_3, z_4, z_5),$$

be a morphism on the affine variety $A(6)$ where z_1, \ldots, z_5 are defined as

$$z_1 = q_1^2, \quad z_2 = q_2, \quad z_3 = p_2, \quad z_4 = q_1 p_1, \quad z_5 = 2q_1^2 q_2^2 + p_1^2.$$

Proposition 3.1 The morphism (9) maps the vector field (4) into a Liouville integrable system (10) in five unknowns having three quartic invariants. The complex affine variety $B(12)$ defined by putting these invariants equal to generic constants, is a double cover of the Kummer surface $K_B(13)$ and the system (10) is reduced to (15) which can be integrated in genus 2 hyperelliptic functions.

Proof. The change of variables (9) maps the vector field (4) into the system of differential equation

$$\begin{align*}
\dot{z}_1 &= 2z_4, \\
\dot{z}_2 &= z_3, \\
\dot{z}_3 &= -4z_2 - 6z_1 z_3 - 16z_2^2, \\
\dot{z}_4 &= -az_1 - z_3^2 - 8z_1 z_4 + z_5, \\
\dot{z}_5 &= -8z_2^2 z_4 - 2az_4 - 2z_1 z_4 + 4z_1 z_3 z_5.
\end{align*}$$

with constants of motion

$$F_1 = \frac{1}{2} z_5^2 + 2z_1 z_3^2 + \frac{1}{2} z_3^2 + \frac{1}{2} z_1^2 + 2z_1 z_2^2 + \frac{1}{2} z_2^2 + 4z_4^2,$$

$$F_2 = az_1 z_3 + z_3^2 z_5 + 4z_1 z_3^2 - z_3 z_5 + z_3 z_4,$$

$$F_3 = z_3 z_5 - 2z_1 z_3^2 - z_5^2.$$

This new system is completely integrable and the hamiltonian structure is defined by the Poisson bracket

$$\{F, H\} = \left(\frac{\partial F}{\partial z_2}, \frac{\partial H}{\partial z_2}\right) = \sum_{k=1}^5 \frac{\partial F}{\partial z_k} \frac{\partial H}{\partial z_k},$$

where

$$\begin{bmatrix}
0 & 0 & 0 & 2z_1 & 4z_4 \\
0 & 0 & 1 & 0 & 0 \\
-2z_1 & 0 & 0 & 0 & 0 \\
-4z_4 & 0 & 4z_1 z_2 & -2z_1 + 8z_1 z_4 & 0
\end{bmatrix}$$

is a skew-symmetric matrix for which the corresponding Poisson bracket satisfies the Jacobi identities. The system (10) can be written as

$$\dot{z} = J \frac{\partial H}{\partial z}, \quad z = (z_1, z_2, z_3, z_4, z_5)^T,$$

where $H = F_1$. The second flow commuting with the first is regulated by the equations

$$\dot{z} = J \frac{\partial H}{\partial z}, \quad z = (z_1, z_2, z_3, z_4, z_5)^T,$$

and is written explicitly as

$$\begin{align*}
\dot{z}_1 &= 2z_1 z_3 - 4z_2 z_4, \\
\dot{z}_2 &= z_4, \\
\dot{z}_3 &= z_5 - 8z_1 z_3^2 - az_1 - z_3^2.
\end{align*}$$
These vector fields are in involution, i.e.,
\[\{F_1, F_2\} = \left(\frac{\partial F_1}{\partial z_1} \right) \left(\frac{\partial F_2}{\partial z_2} \right) = 0, \]
and the remaining one is casimir, i.e.,
\[J \frac{\partial F_3}{\partial z_3} = 0. \]

Let B be the complex affine variety defined by
\[B = \cap_{k=1}^{6} \{ z : F_k(z) = c_k \} \subset \mathbb{C}^5, \]
for generic \((c_1, c_2, c_3) \in \mathbb{C}^3\). Note that
\[\sigma: (z_1, z_2, z_3, z_4, z_5, z_6) \mapsto (z_1, z_2, -z_3, -z_4, z_5, z_6), \]
is an involution on B. The quotient \(B/\sigma \) is a Kummer surface \(K_6 \) defined by
\[p(z_1, z_2)z_2^2 + q(z_1, z_2)z_2 + r(z_1, z_2) = 0, \]
where
\[p(z_1, z_2) = z_1^2 + z_1, \]
\[q(z_1, z_2) = \frac{1}{2}z_1^3 + 2az_1z_2^2 + az_2^3 - 2cz_1 + 2cz_2 - c_3, \]
\[r(z_1, z_2) = -8cz_1z_2^2 + (a^2 + 4c_1)z_2^4z_2^2 - 8cz_1z_2^2 - \frac{1}{2}cz_1^2 - 4ac_1z_2^2 - 2ac_2z_1z_2 - ac_3z_1 + c_2^2 + 2c_1c_3. \]

Using \(F_1 = c_1(11) \), we have
\[z_5 = 2c_1 - 4z_1z_2 - z_2^2 - az_1 - 4az_2^2 - \frac{1}{2}z_1^2 - 8z_2^2, \]
and substituting this into \(F_2 = c_2, F_3 = c_3 \), (11) yields
\[2az_1z_3 + \frac{3}{2}z_1^2z_2 + 8z_1z_2^3 - 2cz_1z_2 + z_2^2 - 4az_1z_2^2 + 8z_2^3 + \frac{1}{2}z_1^2 - 8z_2^2, \]
\[z_2z_5 = c_5, \]
\[2c_1z_1 - 6z_2^2z_2 - z_2z_5^2 - az_1 - 4az_2^2 - \frac{1}{2}z_1^2 - 8z_2^2. \]

We introduce the coordinates \(\mu_1, \mu_2 \) as follows
\[z_1 = -4\mu_1\mu_2, \]
\[z_2 = \mu_1 + \mu_2, \]
\[z_3 = \mu_1 + \mu_2, \]
\[z_4 = -2(\mu_1\mu_1 + \mu_1\mu_2), \]

Upon substituting this parametrization, (14) turns into
\[(\mu_1 - \mu_2)(\mu_1^2 - (\mu_2)^2) + 8(\mu_1 + \mu_2)(\mu_1^2 + \mu_2^2 + \mu_1\mu_2) + 4a(\mu_1 + \mu_2)(\mu_1^2 + \mu_2^2) - 2c_1(\mu_1 + \mu_2) - c_5 = 0, \]
\[(\mu_1 - \mu_2)(\mu_1^2 - (\mu_2)^2) - \mu_2(\mu_2)^2 + 32\mu_1\mu_2(\mu_1^2 + \mu_2^2 + \mu_1\mu_2) + 32\mu_1^2\mu_2^2 + 16a(\mu_1\mu_2)(\mu_1^2 + \mu_2^2) + 16a(\mu_1^2 + \mu_2^2) - 8c_1\mu_1\mu_2 - c_5 = 0. \]

These equations are solved linearly for \(\mu_1^2 \) and \(\mu_2^2 \) as
\[(\mu_1^2)^2 = \frac{-8c_1\mu_1^2}{-32\mu_1^2 - 16a(\mu_1^2 + \mu_2^2) + 32\mu_1\mu_2(\mu_1^2 + \mu_2^2)} - c_5, \]
\[(\mu_2^2)^2 = \frac{-8c_1\mu_2^2}{-32\mu_2^2 - 16a(\mu_1^2 + \mu_2^2) + 32\mu_1\mu_2(\mu_1^2 + \mu_2^2)} - c_5, \]
leading immediately to the Jacobi form and the system can be integrated in genus 2 hyperelliptic functions. This establishes the proposition.

The invariant variety \(B(12) \) is a smooth affine surface for generic values of \(c_1, c_2 \) and \(c_3 \). So, the question I address is how does one find the compactification of \(B \) into an abelian surface? The idea of the direct proof we shall give here is closely related to the geometric spirit of the (real) Arnold-Liouville theorem [1,2,15]. Namely, a compact complex \(\mathfrak{n} \)-dimensional variety on which there exist \(\mathfrak{n} \) holomorphic commuting vector fields which are independent at every point is analytically isomorphic to a \(\mathfrak{n} \)-dimensional complex torus \(\mathbb{C}^{\mathfrak{n}}/\Lambda \) and the complex flows generated by the vector fields are straight lines on this complex torus. Now, the main problem will be to complete \(B(12) \) into a non singular compact complex algebraic variety \(\bar{B} = B \cup \mathcal{D} \) in such a way that the vector fields \(X_{F_1} \) and \(X_{F_2} \) generated respectively by \(F_1 \) and \(F_2 \), extend holomorphically along a divisor \(\mathcal{D} \) and remain independent there. If this is possible, \(\bar{B} \) is an algebraic complex torus (an
abelian variety) and the coordinates $z_1, ..., z_5$ restricted to B are abelian functions. A naive guess would be to take the natural compactification \overline{B} of B by projectivizing the equations: $\overline{B} = \bigcap_{k=1}^{n} \{ F_k(z) = c_k z^k \} \subset \mathbb{P}^5$. Indeed, this can never work for a general reason: an abelian variety \overline{B} of dimension bigger or equal than two is never a complete intersection, that is it can never be described in some projective space \mathbb{P}^m by $n - \dim \overline{B}$ global polynomial homogeneous equations. In other words, if \overline{B} is to be the affine part of an abelian surface, \overline{B} must have a singularity somewhere along the locus at infinity $\overline{B} \cap \{ z_0 = 0 \}$. In fact, we shall show that the existence of meromorphic solutions to the differential equations (10) depending on 4 free parameters can be used to manufacture the tori, without ever going through the delicate procedure of blowing up and down. Information about the tori can then be gathered from the divisor.

Proposition 3.2 The system (10) possesses Laurent series solutions which depend on 4 free parameters: α, β, γ and θ. These meromorphic solutions restricted to the surface $B(12)$ are parameterized by two isomorphic smooth hyperelliptic curves $\mathcal{H}_{\text{ext}+f(17)}$ of genus 2.

Proof. The first fact to observe is that if the system is to have Laurent solutions depending on 4 free parameters, the Laurent decomposition of such asymptotic solutions must have the following form

$$
\begin{align*}
& z_1 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_2 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_3 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_4 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_5 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots).
\end{align*}
$$

Putting these expansions into

$$
\begin{align*}
& \xi' = -2 a x_1 - 2 a^2 - 16 x_1 x_2^2 + 2 x_5, \\
& \xi' = -4 a x_2 - 6 x_1 x_2 - 16 x_2^2, \\
& \xi' = -8 x_2 x_4 - 2 a x_2 - 2 x_4 x_2 + 4 x_4 x_3 x_5,
\end{align*}
$$
deduced from (10), solving inductively for the $z_k^{(j)} (k = 1, 2, 5)$, one finds at the 0^{th} step (resp. 2^{nd} step) a free parameter α (resp. β) and the two remaining ones γ, θ at the 4^{th} step. More precisely, we have

$$
\begin{align*}
& z_1 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_2 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_3 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_4 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots), \\
& z_5 = \frac{1}{\xi} (a - a^2 t + \beta t^2 + \frac{1}{\xi} (3 \beta - 9 a^3 + 4 a a) t^3 + \gamma t^4 + \ldots),
\end{align*}
$$

(16)

with $\varepsilon = \frac{1}{\xi}$. Using the majorant method, we can show that the formal Laurent series solutions are convergent. Substituting the solutions (16) into $F_1 = c_1, F_2 = c_2$ and $F_3 = c_3$, and equating the t^0-terms yields

$$
\begin{align*}
& F_1 = \frac{15}{8} a^4 - \frac{5}{6} a a^2 - \frac{5}{6} \beta + \frac{1}{36} a^2 - \frac{5}{4} \varepsilon \sqrt{2} \theta = c_1, \\
& F_2 = c \sqrt{2} (\frac{1}{4} a^3 + \gamma + \frac{e \sqrt{2}}{4} a \theta - \frac{7}{9} a a^2 + \frac{1}{9} \alpha \beta + \frac{1}{6} a^2 + \frac{1}{2} \alpha^2 \beta = c_2,
\end{align*}
$$
Eliminating \(\gamma \) and \(\theta \) from these equations, leads to two isomorphic smooth hyperelliptic curves \(\mathcal{H}_e (\varepsilon = \pm 0) \) of genus 2:

\[
\beta^2 + 2\left(3\alpha^2 - 2\alpha\right) - 3\alpha^6 + \frac{8}{9}\beta^3 a^4 + \frac{4}{9}(a^2 + 9e_2)\alpha^2 - 2e\sqrt{2}c_2\alpha + c_2 = 0,
\]

which finishes the proof of the proposition.

In order to embed \(\mathcal{H}_e \) into some projective space, one of the key underlying principles used is the Kodaira embedding theorem (see appendix A), which states that a smooth complex manifold can be smoothly embedded into projective space \(\mathbb{P}^N \)

with the set of functions having a pole of order \(k \) along positive divisor on the manifold, provided \(k \) is large enough; fortunately, for abelian varieties, \(k \) need not be larger than three according to Lefshetz. These functions are easily constructed from the Laurent solutions (16) by looking for polynomials in the phase variables which in the expansions have at most a \(k \)-fold pole. The nature of the expansions and some algebraic properties of abelian varieties provide a recipe for when to terminate our search for such functions, thus making the procedure implementable. Precisely, we wish to find a set of polynomial functions \(\{g_0, \ldots, g_r\} \) of increasing degree in the original variables \(z_1, \ldots, z_5 \), having the property that the embedding \(D \) of \(\mathcal{H}_e, \mathcal{H}_{-e} \) into \(\mathbb{P}^N \) via those functions satisfies the relation (see appendix A (23)):

\[
\text{geometric genus} \quad (2D) = g(2D) = N + 2.
\]

A point, it may or may not be so clear why the curve \(D \) must really live on an abelian surface. Let us say, for the moment, that the equations of the divisor \(D \) (i.e., the place where the solutions blow up), as a curve traced on the abelian surface \(B \) (to be constructed in proposition 3.4), must be understood as relations connecting the free parameters as they appear firstly in the expansions (16). In the present situation, this means that (17) must be understood as relations connecting \(\alpha \) and \(\beta \). Let

\[
L^{(r)} = \left\{ \begin{array}{c}
\text{polynomials } g = g(z_1, \ldots, z_5) \in \mathbb{P}^{N_r} \\
\text{of degree } \leq r, \text{ with at worst a}
\text{double pole along } \mathcal{H}_1 + \mathcal{H}_{-1}
\text{and with } z_1, \ldots, z_5 \text{ as in (16)}
\end{array} \right\}
\]

and let \(\{g_0, g_1, \ldots, g_r\} \) be a basis of \(L^{(r)} \). We look for \(r \) such that:

\[
g(2D) = N_r + 2, \quad 2D^{(r)} \subset \mathbb{P}^{N_r}.
\]

We shall show (proposition 3.3) that it is unnecessary to go beyond \(r = 4 \).

Lemma 3.1 The spaces \(L^{(r)} \), nested according to weighted degree, are generated as follows

\[
\begin{align*}
L^{(1)} &= \{g_0, g_1, g_2, g_3, g_4, g_5\}, \\
L^{(2)} &= L^{(1)} \oplus \{g_6, g_7, g_8, g_9, g_{10}, g_{11}, g_{12}\}, \\
L^{(3)} &= L^{(2)}, \\
L^{(4)} &= L^{(3)} \oplus \{g_{13}, g_{14}, g_{15}\}.
\end{align*}
\]

where

\[
g_0 = 1, \quad g_1 = z_1 = \frac{a}{r} + \cdots,
\]

\[
g_2 = z_2 = \frac{e\sqrt{2}}{r} + \cdots, \quad g_3 = z_3 = \frac{e\sqrt{2}}{4r^2} + \cdots,
\]

\[
g_4 = z_4 = -\frac{c}{2r^2} + \cdots, \quad g_5 = z_5 = -\frac{b}{2r} + \cdots,
\]

\[
g_6 = z_6 = \frac{a^2}{2r^2} + \cdots, \quad g_7 = z_7 = -\frac{1}{8r^2} + \cdots,
\]

\[
g_8 = z_8 = \frac{b^2}{9r^2} + \cdots, \quad g_9 = z_9z_2 = \frac{e\sqrt{2}z_2}{4r^2} + \cdots,
\]

\[
g_{10} = z_2z_5 = \frac{e\sqrt{2}z_5}{12r^2} + \cdots, \quad g_{11} = z_2z_5 = -\frac{e\sqrt{2}z_2}{12r^2} + \cdots,
\]

\[
g_{12} = [z_1, z_3] = \frac{-e\sqrt{2}z_1}{2r^2} + \cdots, \quad g_{13} = [z_2, z_4] = \frac{ae^2}{3r^2} + \cdots,
\]

\[
g_{14} = [z_2, z_5] = \frac{e\sqrt{2}z_2}{2r^2} + \cdots, \quad g_{15} = (z_3 - 2e\sqrt{2}z_2)^2 = -\frac{a^2}{2r^2} + \cdots,
\]
with \([s_j, s_k] = \delta_j \delta_k - s_j s_k \), the wronskien of \(s_k \) and \(s_j \), and \(\eta \equiv 3 \beta - 3 \alpha^3 + 3 \alpha \).

Proof. The proof of this lemma is straightforward and can be done by inspection of the expansions (16). Note also that the functions \(g_2, g_1, g_5 \) behave as \(1/t \) and if we consider the derivatives of the ratios \(g_1/g_2, g_5/g_2, g_2/g_5 \), the wronskiens \([g_1, g_2], [g_1, g_5], [g_5, g_2] \) must behave as \(1/t^2 \) since \(g_1^2, g_5^2 \) behave also as \(1/t^2 \).

Note that \(\dim L^{(2)} = 6, \ \dim L^{(2)} = \dim L^{(2)} = 13, \ \dim L^{(4)} = 16 \).

Proposition 3.3 \(L^{(4)} \) provides an embedding of \(D^{(4)} \) into projective space \(\mathbb{P}^{15} \) and \(D^{(4)} \) (resp. \(2D^{(4)} \)) has genus 5 (resp. 17).

Proof. It turns out that neither \(L^{(3)}, \) nor \(L^{(3)}, \) nor \(L^{(3)} \) yields a curve of the right genus; in fact

\[
g(2D^{(3)}) = \dim L^{(3)} + 1, \quad r = 1, 2, 3.
\]

For instance, the embedding into \(\mathbb{P}^{5} \) via \(L^{(3)} \) does not separate the sheets, so we proceed to \(L^{(3)} \) and the corresponding embedding into \(\mathbb{P}^{12} \). For finite values of \(\alpha \) and \(\beta \), the curves \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) are disjoint; dividing the vector \((g_6, \ldots, g_{12}) \) by \(g_7 \) and taking the limit \(t \to 0 \), to yield

\[
[0: 0: 0: 2e^{\sqrt{2}/8} \alpha; 0: -8e^2 - 1: -\sqrt{2} \eta; -8e^{\sqrt{2}/8} \alpha^2; \frac{8e^2}{\sqrt{2}} \eta; e^{\sqrt{2}a^2}].
\]

The curve (17) has two points covering \(\alpha = \infty \), at which \(\eta \equiv 3 \beta - 3 \alpha^3 + 3 \alpha \) behaves as follows:

\[
\eta = \frac{-6 \alpha^2 + 3 \alpha \alpha + 3 \sqrt{4 \alpha^3 - 4 \alpha^3 + 4 \alpha^3 + 2 \sqrt{2} \alpha^2 - c_3}}{
\begin{cases}
\frac{2 (\alpha^2 + 4 \alpha)}{4 \alpha} & \text{lower order terms, picking the + sign}, \\
-12 \alpha^2 & \text{O(\alpha)}, \ \text{picking the - sign}.
\end{cases}
\]

Then by picking the - sign and by dividing the vector \((g_6, \ldots, g_{12}) \) by \(g_7 \), the corresponding point is mapped into the point

\[
[0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0],
\]

in \(\mathbb{P}^{12} \) which is independent of \(\epsilon \), whereas picking the + sign leads to two different points, according to the sign of \(\epsilon \). Thus, adding at least 2 to the genus of each curve, so that

\[
g(2D^{(3)}) = 12, \quad 2D^{(3)} \subset \mathbb{P}^{12} \neq \mathbb{P}^{2},
\]

which contradicts the fact that \(N_1 = g(2D^{(3)}) - 2 \). The embedding via \(L^{(3)} \) (or \(L^{(3)} \)) is unacceptable as well. Consider now the embedding \(2D^{(4)} \) into \(\mathbb{P}^{15} \) using the 16 functions \(g_6, \ldots, g_{15} \) of \(L^{(4)}(18) \). It is easily seen that these functions separate all points of the curve (except perhaps for the points at \(\alpha \)): The curves \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) are disjoint for finite values of \(\alpha \) and \(\beta \); dividing the vector \((g_6, \ldots, g_{15}) \) by \(g_7 \) and taking the limit \(t \to 0 \), to yield

\[
[0: 0: 0: 2e^{\sqrt{2}/8} \alpha; 0: -8e^2 - 1: -\sqrt{2} \eta; -8e^{\sqrt{2}/8} \alpha^2; \frac{8e^2}{\sqrt{2}} \eta; e^{\sqrt{2}a^2}].
\]

About the point \(\alpha = \infty \), it is appropriate to divide by \(g_8 \); then by picking the sign - \(\eta \) above, the corresponding point is mapped into the point

\[
[0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0: 0],
\]

in \(\mathbb{P}^{15} \) which is independent of \(\epsilon \), whereas picking the + sign leads to two different points, according to the sign of \(\epsilon \). Hence from formula (appendix A(26)), the divisor \(D^{(4)} \) obtained in this way has genus 5 and thus \(g(2D^{(4)}) \) has genus 17 and \(2D^{(4)} \subset \mathbb{P}^{15} \), \(\epsilon \), as desired. (i.e., satisfying the requirement appendix A(23)). This ends the proof of the proposition.

Let \(L = L^{(4)}, D = D^{(4)} \) and \(\mathcal{S} = 2D^{(4)} \subset \mathbb{P}^{15} \). Next we wish to construct a surface strip around \(\mathcal{S} \), which will support the commuting vector fields. In fact, \(\mathcal{S} \) has a good chance to be very ample divisor on an abelian surface, still to be constructed.

Proposition 3.4 The variety \(B(12) \) generically is the affine part of an abelian surface \(\mathcal{B} \), more precisely the jacobian of a genus 2 curve. The reduced divisor at infinity

\[
\mathcal{B} \backslash \mathcal{B} = \mathcal{H}_1 + \mathcal{H}_2,
\]

consists of two smooth isomorphic genus 2 curves \(\mathcal{H}_2(17) \). The system of differential equations (10) is algebraic complete integrable and the corresponding flows evolve on \(\mathcal{B} \).

Proof. We need to attach the affine part of the intersection of the three invariants (11) so as to obtain a smooth compact connected surface in \(\mathbb{P}^{15} \). To be precise, the orbits of the vector field (10) running through \(\mathcal{S} \) form a smooth surface \(\Sigma \) near \(\mathcal{S} \) such that \(\Sigma \backslash \mathcal{B} \subset \mathcal{B} \) and the variety \(\mathcal{B} = \mathcal{B} \cup \Sigma \) is smooth, compact and connected. Indeed, let \(\psi(t, p) = (x(t), x_1(t), \ldots, x_5(t)); t \in \mathbb{C}, 0 < |t| < \epsilon \), be the orbit of the vector field (10) going through the point \(p \in \mathcal{S} \). Let
Let $\Sigma_p \subset \mathbb{P}^{15}$ be the surface element formed by the divisor \mathcal{S} and the orbits going through p, and set $\Sigma \equiv \bigcup_{p \in \mathcal{S}} \Sigma_p$. Consider the curve $\pi' = \mathcal{H} \cap \Sigma$ where $\mathcal{H} \subset \mathbb{P}^{15}$ is a hyperplane transversal to the direction of the flow. If π' is smooth, then using the implicit function theorem the surface Σ is smooth. But if π' is singular at 0, then Σ would be singular along the trajectory (t-axis) which go immediately into the affine part B. Hence, B would be singular which is a contradiction because B is the fibre of a morphism from \mathbb{C}^5 to \mathbb{C} and so smooth for almost all the three constants of the motion c_n. Next, let \mathcal{B} be the projective closure of B into \mathbb{P}^5, let $Z = \{z_0, z_2, \ldots, z_5\} \subset \mathbb{P}^5$ and let $I = \mathcal{B} \cap \{z_0 = 0\}$ be the locus at infinity. Consider the map $\mathcal{B} \subset \mathbb{P}^5 \rightarrow \mathbb{P}^{15}, Z \mapsto g(Z)$, where $g = (g_0, g_1, \ldots, g_5) \in L(\mathcal{S})^{(18)}$ and let $\mathcal{B} = \mathcal{g}(\mathcal{B})$. In a neighbourhood $V(p) \subset \mathbb{P}^{15}$ of p, we have $\Sigma_p = \mathcal{B}$ and $\Sigma_p \cap I \subset B$. Otherwise there would exist an element of surface $\Sigma_p \subset \mathcal{B}$ such that $\Sigma_p \cap \Sigma_q = (t - \text{axis})$. orbit $\psi(t, p) = (t - \text{axis}) \setminus p \subset \mathcal{B}$, and hence B would be singular along the t-axis which is impossible. Since the variety $\mathcal{B} \cap \{z_0 \neq 0\}$ is irreducible and since the generic hyperplane section \mathcal{H}_{gen} of \mathcal{B} is also irreducible, all hyperplane sections are connected and hence I is also connected. Now, consider the graph $\Gamma_p \subset \mathbb{P}^5 \times \mathbb{P}^{15}$ of the map g, which is irreducible together with \mathcal{B}. It follows from the irreducibility of I that a generic hyperplane section $\Gamma_p \cap \{\mathcal{H}_{\text{gen}} \times \mathbb{P}^{15}\}$ is irreducible, hence the special hyperplane section $\Gamma_p \cap \{\{z_0 = 0\} \times \mathbb{P}^{15}\}$ is connected and therefore the projection map $\text{proj}_{\mathbb{P}^{15}}(\Gamma_p \cap \{\{z_0 = 0\} \times \mathbb{P}^{15}\}) = (t) \equiv \mathcal{S}$ is connected. Hence, the variety $\mathcal{B} \cup \Sigma = \mathcal{B}$ is compact, connected and embeds smoothly into \mathbb{P}^{15} via g. We wish to show that \mathcal{B} is an abelian surface equipped with two everywhere independent commuting vector fields. For doing that, let ϕ^{\pm} and ψ^{\pm} be the flows corresponding to vector fields X_{p_1} and X_{p_2}. The latter are generated respectively by F_1 and F_2. For $p \in \mathcal{S}$ and for small $\varepsilon > 0, \phi^{\pm}(p), \forall \tau \in (0, \tau_1], 0 < \tau_1 < \varepsilon$, is well defined and $\phi^{\pm}(p) \subset B$. Then we may define ϕ^{\pm} on B by $\phi^{\pm}(q) = \phi^{\pm}(\phi^{\mp}(q), q \in \mathcal{U}(p) = \phi^{\pm}(\mathcal{U}(\phi^{\mp}(q))))$, where $\mathcal{U}(p)$ is a neighbourhood of p. By commutativity one can see that $\phi^{\pm} = \phi^{\pm}(\mathcal{S})$ is independent of τ_1:

$$\phi^{\pm}(q) = \phi^{\pm}(\phi^{\mp}(q), \tau = \tau_1.$$

We affirm that $\phi^{\mp}(q)$ is holomorphic away from \mathcal{S}. This because $\phi^{\mp}(q)$ is holomorphic away from \mathcal{S} and that ϕ^{\pm} is holomorphic in $U(p)$ and maps bi-holomorphically $U(p)$ onto $U(\phi^{\pm}(p))$. Now, since the flows ϕ^{\pm} and ψ^{\pm} are holomorphic and independent on \mathcal{S}, we can show along the same lines as in the Arnold-Liouville theorem [1,2,15] that \mathcal{B} is a complex torus $\mathbb{C}^2/\text{lattice}$ and so in particular \mathcal{B} is a Kähler variety. And that will done, by considering the local diffeomorphism $\mathcal{B} \cong \mathbb{R}^{10}, (\tau_1, \tau_2) \mapsto \phi^{\pm}(\mathcal{S}), p \in B$. The additive subgroup $\{\{\tau_1, \tau_2\} \in \mathbb{C}^2 : \phi^{\pm}(\mathcal{S}) = p\}$ is a lattice on \mathbb{C}^2, hence $\mathcal{B} = \mathbb{C}^2/\text{lattice} \rightarrow \mathbb{B}$ is a biholomorphic diffeomorphism and \mathcal{B} is a Kähler variety with Kähler metric given by $dt_1 \otimes dt_1 + dt_2 \otimes dt_2$. As mentioned in appendix A, a compact complex Kähler variety having the required number as (its dimension) of independent meromorphic functions is a projective variety. In fact, here we have $\mathcal{B} \subset \mathbb{P}^{15}$. Thus \mathcal{B} is both a projective variety and a complex torus $\mathbb{C}^2/\text{lattice}$ and hence an abelian surface as a consequence of Chow’s theorem. By the classification theorem of ample line bundles on abelian varieties, $\mathcal{B} \cong \mathbb{C}^2/L_0$ with period lattice given by the columns of the matrix

$$
\begin{pmatrix}
\delta_1 & 0 & a & c \\
0 & \delta_2 & c & b
\end{pmatrix}, \quad \text{Im} \begin{pmatrix}
a & c \\
c & b
\end{pmatrix} > 0,
$$

according to (23), with $\delta_1, \delta_2 = g(\mathcal{H}_1, \mathcal{S}) - 1 = 1$, implying $\delta_1 = \delta_2 = 1$. Thus \mathcal{B} is principally polarized and it is the jacobian of the hyperelliptic curve \mathcal{H}_1. This completes the proof of the proposition.

Remark 3.1 We have seen that the reflection σ on the affine variety A amounts to the flip $\sigma:(z_1, z_2, z_3, z_4, z_5) \mapsto (z_1, z_2, -z_3, -z_4, z_5)$, changing the direction of the commuting vector fields. It can be extended to the (id)-involution about the origin of \mathbb{C}^5 to the time flip $(t_1, t_2) \mapsto (-t_1, -t_2)$ on \mathcal{B}, where t_1 and t_2 are the time coordinates of each of the flows X_{F_1} and X_{F_2}. The involution σ acts on the parameters of the Laurent solution (16) as follows

$$\sigma:(t, a, \alpha, \beta, \gamma, \theta, \varepsilon) \mapsto (-t, -a, -\alpha, -\beta, -\gamma, -\theta, -\varepsilon),$$

interchanges the curves \mathcal{H}_{gen} (17) and the linear space L can be split into a direct sum of even and odd functions. Geometrically, this involution interchanges \mathcal{H}_1 and \mathcal{H}_{-1}, i.e., $\mathcal{H}_{-1} = \sigma \mathcal{H}_1$.

Remark 3.2 Consider on \mathcal{B} the holomorphic 1-forms dt_1 and dt_2 defined by $dt_1(X_{F_1}) = \delta_{ij}$, where X_{F_1} and X_{F_2} are the vector fields generated respectively by F_1 and F_2. Taking the differentials of $\zeta = 1/z_1$ and $\xi = z_1/z_2$ viewed as functions of t_1 and t_2, using the vector fields and the Laurent series (16) and solving linearly for dt_1 and dt_2, we obtain as expected the hyperelliptic holomorphic differentials

$$\omega_1 = dt_1|_{Z_2} = \frac{1}{a}(\frac{\partial l_1}{\partial t_2} dt_1 - \frac{\partial l_1}{\partial t_2} dt_2)|_{Z_2} = \frac{a dx}{\sqrt{P(\alpha)}},$$

$$\omega_2 = dt_2|_{Z_2} = \frac{1}{\bar{a}}(\frac{\partial l_2}{\partial t_1} dt_1 - \frac{\partial l_2}{\partial t_1} dt_2)|_{Z_2} = \frac{\bar{a} dx}{\sqrt{P(\alpha)}}.$$
with \(P(\alpha) = 4\alpha^6 - 4a\alpha^4 - 4c\alpha^2 + 2e\sqrt{2c_2}\alpha - c_2 \) and \(\Delta = \frac{2e}{2\sqrt{2c}} \). The zeroes of \(\omega_2 \) provide the points of tangency of the vector field \(X_{F_2} \) to \(\mathcal{H}_e \). We have \(\frac{\partial \omega_2}{\partial x} = -\varepsilon\sqrt{2\alpha} \), and \(X_{F_2} \) is (doubly) tangent to \(\mathcal{H}_e \) at the point covering \(\alpha = \infty \), i.e., where both the curves touch.

The asymptotic solution (7) can be read off from (16) and the change of variable : \(q_1 = \sqrt{\varepsilon}z_1, q_2 = z_2, p_1 = q_1, p_2 = q_2 \). The function \(z_1 \) has a simple pole along the divisor \(\mathcal{H}_1 + \mathcal{H}_i \) and a double zero along a hyperelliptic curve of genus 2 defining a double cover of \(\mathcal{B} \) ramified along \(\mathcal{H}_1 + \mathcal{H}_i \). Applying the method explained in Piovano [20], we have the

Proposition 3.5 The invariant surface \(\mathcal{A}(6) \) can be completed as a cyclic double cover \(\overline{\mathcal{A}} \) of the abelian surface \(\mathcal{B} \) (the Jacobian of a genus 2 curve), ramified along the divisor \(\mathcal{H}_1 + \mathcal{H}_i \). The system (4) is algebraic complete integrable in the generalized sense. Moreover, \(\overline{\mathcal{A}} \) is smooth except at the point lying over the singularity (of type \(A_2 \)) of \(\mathcal{H}_1 + \mathcal{H}_i \) and the resolution \(\overline{\mathcal{A}} \) of \(\overline{\mathcal{A}} \) is a surface of general type with invariants : \(X(\overline{\mathcal{A}}) = 1 \) and \(p_g(\overline{\mathcal{A}}) = 2 \).

Proof. We have shown that the morphism \(\varphi \) (9) maps the vector field (4) into an algebraic complete integrable system (10) in five unknowns and the affine variety \(\mathcal{A}(6) \) onto the affine part \(\mathcal{B}(12) \) of an abelian variety \(\mathcal{B} \) (more precisely the Jacobian of a genus 2 curve with \(\mathcal{B}(\mathcal{B} = \mathcal{H}_1 + \mathcal{H}_i) \). Observe that \(\varphi : \mathcal{A} \to \mathcal{B} \) is an unramified cover. The curves \(\mathcal{C}_e \) (7) play an important role in the construction of a compactification \(\overline{\mathcal{A}} \) of \(\mathcal{A} \). Let us denote by \(G \) a cyclic group of two elements \((-1,1)\) on \(V_0^1 \). \((-1,1) \) acts on the Jacobian of a genus 2 curve and therefore can be completed to an algebraic cyclic cover of \(\mathcal{B} \). To see what happens to the missing points, we must investigate the image of \(\mathcal{C}_e \times \{ 0 \} \) in \(\mathcal{A}_1 \). The quotient \(\mathcal{C}_e \times \{ 0 \} / G \) is birationally equivalent to the smooth hyperelliptic curve \(\mathcal{C}_e \times \mathcal{I} \) of genus 2 :

\[
2w^4 + \frac{1}{6}(15z^2 - 8a)w + z(\frac{27}{2} + \frac{1}{6}az^2 + \frac{2}{9}(a^2 + \frac{9}{2}c_1)z - \sqrt{2c} = 0,
\]

where \(w = uw, z = u^2 \). The curve \(\mathcal{C}_e \) is birationally equivalent to \(\mathcal{H}_e \). The only points of \(\mathcal{C}_e \) fixed under \((u,v) \mapsto (-u,-v) \) are the two points at \(\infty \), which correspond to the ramification points of the map \(\mathcal{C}_e \times \{ 0 \} \to \mathcal{A}_1 ; (u,v) \mapsto (u,v) \) and coincides with the points at \(\infty \) of the curve \(\mathcal{H}_e \). Then the variety \(\overline{\mathcal{A}} \) constructed above is birationally equivalent to the compactification \(\overline{\mathcal{A}} \) of the generic invariant surface \(\mathcal{A} \). So \(\overline{\mathcal{A}} \) is a cyclic double cover of the abelian surface \(\mathcal{B} \) (the Jacobian of a genus 2 curve) ramified along the divisor \(\mathcal{H}_1 + \mathcal{H}_i \), where \(\mathcal{H}_1 \) and \(\mathcal{H}_i \) have only one point (see proposition 3.3) in commune at which they coincide and the geometric genus of \(\overline{\mathcal{A}} \) is 2. This concludes the proof of the proposition.

Remark 3.3 Consider the case \(c_2 = 0 \), and the transformation (9). Substituting this into the constants of motion \(F_1, F_2, F_3 \) leads obviously to the relations (3) and (5), whereas the last constant leads to an identity. Using the differential equations (10) for \(z_1, z_2, z_3 \) and \(z_4 \) combined with the transformation (9) leads, of course, to the system of differential equations (4). The last equation for \(z_5(1) \) leads to an identity. Observe that if \(a = 0 \) and using the transformation : \(q_j \leftrightarrow q_j, p_j \leftrightarrow p_j, j = 1,2,3 \), we obtain the potential constructed by Ramani, Dorozzi and Grammaticos [21].

IV. APPENDIX

In this appendix we recall some results about abelian surfaces which will be used in this paper (details can be found in [17,9]), as well as the basic techniques to study two-dimensional algebraic completely integrable systems (see appendix B). Let \(M = \mathcal{E}/\Lambda \) be an \(n \)-dimensional abelian variety where \(\Lambda \) is the lattice generated by the \(2n \) columns \(\lambda_1, \ldots, \lambda_2n \) of the \(n \times 2n \) period matrix \(\Omega \) and let \(D \) be a divisor on \(M \). Define \(L(D) = \{ f \mid f \text{ meromorphic on } M \text{ such that } (f) \geq -D \} \), i.e., for \(D = \sum \kappa_j \mathcal{D}_j \) a function \(f \in L(D) \) has at worst a \(k_j \)-fold pole along \(D_j \). The divisor \(\mathcal{D} \) is called ample when a basis \((f_1, \ldots, f_N) \) of \(L(\mathcal{D}) \) embeds \(M \) smoothly into \(\mathbb{P}^N \) for some \(k \), via the map

\[
M \to \mathbb{P}^N, p \mapsto \{ 1:f_1(p), \ldots : f_N(p) \}.
\]
then \(kD \) is called very ample. It is known that every positive divisor \(D \) on an irreducible abelian variety is ample and thus some multiple of \(D \) embeds \(M \) into \(\mathbb{P}^N \). By a theorem of Lefschetz, any \(k \geq 3 \) will work. Moreover, there exists a complex basis of \(\mathbb{C}^n \) such that the lattice expressed in that basis is generated by the columns of the \(n \times 2n \) period matrix

\[
\begin{pmatrix}
\delta_1 & 0 \\
\vdots & \vdots \\
0 & \delta_2 \\
\end{pmatrix}
\]

with \(Z = 2 \text{Im} \, Z > 0, \delta_j \in \mathbb{N}^* \) and \(\delta_j | \delta_{j+1} \). The integers \(\delta_j \) which provide the so-called polarization of the abelian variety \(M \) are then related to the divisor as follows:

\[
\dim \mathcal{L}(D) = \delta_1 \ldots \delta_n. \tag{19}
\]

In the case of a \(2 \)–dimensional abelian varieties (surfaces), even more can be stated: the geometric genus \(g \) of a positive divisor \(D \) (containing possibly one or several curves) on a surface \(M \) is given by the adjunction formula

\[
g(D) = \frac{K_M D + 2D}{2} + 1, \tag{20}
\]

where \(K_M \) is the canonical divisor on \(M \), i.e., the zero-locus of a holomorphic \(2 \)-form, \(D, D \) denote the number of intersection points of \(D \) with \(a + D \) (\(a \) is a small translation by \(a \) of \(D \) on \(M \)), where as the Riemann-Roch theorem for line bundles on a surface tells you that

\[
\chi(D) = p_a(M) + 1 + \frac{1}{2}(D, D - DK_M), \tag{21}
\]

where \(p_a(M) \) is the arithmetic genus of \(M \) and \(\chi(D) \) the Euler characteristic of \(D \). Recall that

\[
\chi(D) = \dim H^0(M, \mathcal{O}_M(D)) - \dim H^1(M, \mathcal{O}_M(D)) + \ldots
\]

\[
+(-1)^n \dim H^n(M, \mathcal{O}_M(D)).
\]

To study abelian surfaces using curves on these surfaces, we recall for example from [24, p.101-102], that

\[
\chi(D) = \dim H^0(M, \mathcal{O}_M(D)) - \dim H^1(M, \mathcal{O}_M(D)) = \dim \mathcal{L}(D) - \dim H^1(M, \Omega^2(D \otimes K_M)) = \dim \mathcal{L}(D), (\text{Kodaira vanishing theorem}), \tag{22}
\]

whenever \(D \otimes K_M \) defines a positive line bundle. However for abelian surfaces, \(K_M \) is trivial and \(p_a(M) = -1 \); therefore combining relations (19), (20), (21) and (22),

\[
\chi(D) = \dim \mathcal{L}(D) = \frac{2g}{2} = g(D) - 1 = \delta_1 \delta_2. \tag{23}
\]

A divisor \(D \) is called projectively normal, when the natural map \(\mathcal{L}(D)^{\otimes k} \to \mathcal{L}(kD) \) is surjective, i.e., every function of \(\mathcal{L}(kD) \) can be written as a linear combination of \(k \)-fold products of functions of \(\mathcal{L}(D) \). Not every very ample divisor \(D \) is projectively normal but if \(D \) is linearly equivalent to \(kD_0 \) for \(k \geq 3 \) for some divisor \(D_0 \), then \(D \) is projectively normal [18,10].

Now consider the exact sheaf sequence

\[
0 \to \mathcal{O}_{\mathcal{C}} \to \mathcal{O}_{\mathcal{C}} \to X \to 0,
\]

where \(\mathcal{C} \) is a singular connected curve, \(\mathcal{C} = \sum \mathcal{C}_j \), the corresponding set of smooth curves after desingularization and \(\pi: \mathcal{C} \to \mathcal{C} \) the projection. The exactness of the sheaf sequence shows that the Euler characteristic satisfies

\[
\chi(\mathcal{O}_{\mathcal{C}}) = \dim H^0(\mathcal{O}_{\mathcal{C}}) - \dim H^1(\mathcal{O}_{\mathcal{C}}), \tag{24}
\]

\[
\chi(\mathcal{O}_{\mathcal{C}}) + \chi(X) = 0. \tag{25}
\]

where \(\chi(X) \) only accounts for the singular points \(p \) of \(\mathcal{C} \); \(\chi(X_p) \) is the dimension of the set of holomorphic functions on the different branches around \(p \) taken separately, modulo the holomorphic functions on the curve \(\mathcal{C} \) near that singular point. Consider the case of a planar singularity (in this paper, we will be concerned by a tacnode for which \(\chi(X) = 2 \), as well), i.e., the tangents to the branches lie in a plane. If \(f_j(x, y) = 0 \) denote the \(j \)th branch of \(\mathcal{C} \) running through \(p \) with local parameter \(s_j \), then

\[
\chi(X_p) = \dim \prod_j \mathcal{C}[[s_j]]/\prod_{j \neq k} (s_j - s_k).
\]

So using (24) and Serre duality, we obtain \(\chi(\mathcal{O}_{\mathcal{C}}) = 1 - g(\mathcal{C}) \) and \(\chi(\mathcal{O}_{\mathcal{C}}) = n - \sum_{j=1}^n g(\mathcal{C}_j) \). Also, replacing in the formula (25), gives

\[
g(\mathcal{C}) = \sum_{j=1}^n g(\mathcal{C}_j) + \chi(X) + 1 - n. \tag{26}
\]
Finally, recall that a Kähler variety is a variety with a Kähler metric, i.e., a hermitian metric whose associated differential 2-form of type (1,1) is closed. The complex torus $\mathbb{C}^n / \text{lattice}$ with the euclidean metric $\sum dz_i \otimes \overline{dz}_i$ is a Kähler variety and any compact complex variety that can be embedded in projective space is also a Kähler variety. Now, a compact complex Kähler variety having as many independent meromorphic functions as its dimension is a projective variety$^{[17]}$.

V. APPENDIX

In this appendix we give some basic facts about integrable hamiltonian systems. Let M be a $2n$-dimensional differentiable manifold and ω a closed non-degenerate differential 2-form. The pair (M, ω) is called a symplectic manifold. Let $H : M \rightarrow \mathbb{R}$ be a smooth function. A hamiltonian system on (M, ω) with hamiltonian H can be written in the form

$$q_i = \frac{\partial H}{\partial \dot{q}_i}, \quad \dot{q}_i = -\frac{\partial H}{\partial q_i},$$

where $(q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n)$ are coordinates in M. Thus the hamiltonian vector field X_H is defined by

$$X_H F = \sum_{k=1}^n \left(\frac{\partial H}{\partial q_k} \frac{\partial}{\partial q_k} - \frac{\partial H}{\partial \dot{q}_k} \frac{\partial}{\partial \dot{q}_k} \right) F = \{F, H\}.$$

A function F is an invariant (first integral) of the hamiltonian system (27) if and only if the Lie derivative of F with respect X_H is identically zero. The functions F and H are said to be in involution or to commute, if $\{F, H\} = 0$. Note that equations (27) and (28) can be written in more compact form

$$\dot{x} = J \frac{\partial H}{\partial x}, \quad x = (q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n)^T,$$

$$\{F, H\} = \sum_{k=1}^n J_{kl} \frac{\partial H}{\partial q_l} \frac{\partial F}{\partial \dot{q}_k} - J_{kl} \frac{\partial H}{\partial \dot{q}_l} \frac{\partial F}{\partial q_k} = \{F, H\}.$$
where $\mathbb{C}^n/Lattice$ is a complex algebraic torus (i.e., abelian variety) and D a divisor. Algebraic means that the torus can be defined as an intersection $\bigcap_{i=1}^{m} P_i(x_1,\ldots,x_n) = 0$ involving a large number of homogeneous polynomials P_i. In the natural coordinates (t_1,\ldots,t_n) of $C^n/Lattice$ coming from \mathbb{C}^n, the functions $x_i = x_i(t_1,\ldots,t_n)$ are meromorphic and (29) defines a straight line motion on $\mathbb{C}^n/Lattice$. Condition (29) means, in particular, there is an algebraic map

$$\begin{align*}
(x_1(t),\ldots,x_n(t)) &\mapsto (\mu_1(t),\ldots,\mu_n(t))
\end{align*}$$

making the following sums linear in t:

$$\sum_{i=1}^{n} \int_{\mu_i(t)}^{\mu_i(0)} \omega_j = d_j, 1 \leq j \leq n, d_j \in \mathbb{C},$$

where ω_1,\ldots,ω_n denote holomorphic differentials on some algebraic curves.

Adler and van Moerbeke [1] have shown that the existence of a coherent set of Laurent solutions:

$$x_i = \sum_{j=0}^{n-1} x_i^{(j)} t^{-k_i}, \quad k_i \in \mathbb{Z}, \text{ some } k_i > 0,$$

depending on \dim (phase space) $-1 = m - 1$ free parameters is necessary and sufficient for a Hamiltonian system with the right number of constants of motion to be a.c.i. So, if the Hamiltonian flow (29) is a.c.i., it means that the variables x_i are meromorphic on the torus $\mathbb{C}^n/Lattice$ and by compactness they must blow up along a codimension one subvariety (a divisor) $D \subset \mathbb{C}^n/Lattice$. By the a.c.i. definition, the flow (29) is a straight line motion in $\mathbb{C}^n/Lattice$ and thus it must hit the divisor D in at least one place. Therefore, through every point of D, there is a straight line motion and therefore a Laurent expansion around that point of intersection. Hence the differential equations must admit Laurent expansions which depend on the $n + k$ parameters defining D and the $n + k$ constants c_i defining the torus $\mathbb{C}^n/Lattice$; the total count is therefore $m - 1 = \dim$ (phase space) $- 1$ parameters.

Next we assume that the divisor is very ample and in addition projectively normal. Consider a point $p \in D$, a chart U_j around p on the torus and a function y_j in $L(D)$ having a pole of maximal order at p. Then the vector $(1/y_1, y_2/y_1, \ldots, y_N/y_1)$ provides a good system of coordinates in U_j. Then taking the derivative with regard to one of the flows

$$\frac{\partial y_i}{\partial y_j} = \frac{\partial y_i}{\partial y_j} y_j y_i,$$

are finite on U_j as well. Therefore, since y_j^2 has a double pole along D, the numerator must also have a double pole (at worst), i.e., $y_i y_j - y_j y_i \in L(2D)$. Hence, when D is projectively normal, we have that

$$\frac{y_i}{y_j} = \sum_{k,l} a_{k,l} \frac{y_k}{y_l},$$

i.e., the ratios y_i/y_j form a closed system of coordinates under differentiation. Using the majorant method [1], we can show that the formal Laurent series solution are convergent. At the bad points, the concept of projective normality play an important role: this enables one to show that y_i/y_j is a bona fide Taylor series starting from every point in a neighbourhood of the point in question.

Some other integrable systems appear as coverings of algebraically completely integrable systems [4,20]. The manifolds invariant by the complex flows are coverings of abelian varieties and these systems are called algebraically completely integrable in the generalized sense.

REFERENCES

Ahmed Lesfari has studied mathematics at the University of Louvain (U.C.L.) where he also obtained his doctoral degree. His mathematical interests are in integrable systems and complex geometry. He has published papers on various topics in interaction between integrable systems, algebraic geometry and complex analysis. The author is now professor at the Department of Mathematics, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco.