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1. Introduction

In recent years, there has been much effort given for finding integrable Hamilto-
nian systems. However, there is still no general method for testing the integra-
bility of a given dynamical system. In this paper, we shall be concerned with
finite dimensional algebraic completely integrable systems. A dynamical system
is algebraic completely integrable (in the sense of Adler-van Moerbeke [1]) if it can
be linearized on an abelian variety (i.e., a complex algebraic torus Cn/lattice).
The invariants (often called first integrals or constants) of the motion are poly-
nomials and the phase space coordinates (or some algebraic functions of these)
restricted to a complex invariant variety defined by putting these invariants equals
to generic constants, are meromorphic functions on an abelian variety. Moreover,
in the coordinates of this abelian variety, the flows (run with complex time) gen-
erated by the constants of the motion are straight lines. However, besides the fact
that many Hamiltonian completely integrable systems possess this structure, an-
other motivation for its study which sounds more modern is: algebraic completely
integrable systems come up systematically whenever you study the isospectral
deformation of some linear operator containing a rational indeterminate. Indeed
a theorem of Adler-Kostant-Symes [10] applied to Kac-Moody algebras provides
such systems which, by a theorem of van Moerbeke-Mumford [17], are algebraic
completely integrable. Therefore there are hidden symmetries which have a group
theoretical foundation. Also some interesting integrable systems appear as cov-
erings of algebraic completely integrable systems. The invariant varieties are
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coverings of abelian varieties and these systems are called algebraic completely
integrable in the generalized sense. The concept of algebraic complete integrabil-
ity is quite effective in small dimensions and has the advantage to lead to global
results, unlike the existing criteria for real analytic integrability, which, at this
stage are perturbation results. In fact, the overwhelming majority of dynamical
systems, Hamiltonian or not, are non-integrable and possess regimes of chaotic
behavior in phase space. In the present paper, we discuss an interesting interac-
tion between complex algebraic geometry and dynamical systems. We construct
a new integrable system in five unknowns having three quartics invariants. This
5-dimensional system is algebraic completely integrable and it establishes some
correspondences for old and new integrable systems. The paper is organized as
follows:

In Section 2, we construct a new and interesting integrable system of differential
equations (1) in five unknowns having three quartics invariants (2). We make a
careful study of the algebraic geometric aspect of the complex affine variety A(3)
defined by putting these invariants equal to generic constants. We find via the
Painlevé analysis the principal balances of the Hamiltonian field defined by the
Hamiltonian. To be more precise, we show that the system (1) possesses Laurent
series solutions in t, which depend on 4 free parameters: α, β, γ and θ. These
meromorphic solutions restricted to the surface A(3) are parameterized by two
copies C−1 and C1 of the same Riemann surface C(5) of genus 7, that intersect in
two points at which they are tangent to each other. The affine variety A(3) is

embedded into P15 and completes into an abelian variety Ã by adjoining a divisor
D = C1 + C−1. The latter has geometric genus 17 and is very ample. The flow
(1) evolves on Ã and is tangent to each Riemann surface C±1 at the points of
tangency between them. Consequently, the system (1) is algebraic integrable. In
Section 3, we show that the system (1) includes in particular, a system (8) in
C4 which is intimately related to the potential obtained by Ramani, Dorizzi and
Grammaticos [16,5]. When one examines all possible singularities of the system
(8), one finds that it is possible for the variable q1 to contain square root terms
of the type t1/2, which are strictly not allowed by the Painlevé test. However,
these terms are trivially removed by introducing the variables z1, . . . , z5 (used in
Section 2), which restores the Painlevé property to the system. We show that
the system (8) admits Laurent solutions in t1/2, depending on 3 free parameters:
u, v and w. These pole solutions restricted to the invariant surface B(9) are
parameterized by two copies −−1 and −1 of the same Riemann surface −(11)
of genus 16. Applying the method explained in Piovan [15], we show that the
invariant variety B(9) can be completed as a cyclic double cover B of the abelian

variety Ã, ramified along the divisor C1+C−1. Moreover, B is smooth except at the
point lying over the singularity (of type A3) of C1 +C−1 and the resolution B̃ of B

is a surface of general type with invariants: Euler characteristic of B̃ ≡ X (B̃) = 1

and geometric genus of B̃ ≡ pg(B̃) = 2. Consequently, the system (8) is algebraic
completely integrable in the generalized sense. The paper is supported by two
appendices which contain some basis concepts concerning abelian varieties and
Hamiltonian systems. The methods which will be used are primarily analytical
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but heavily inspired by algebraic geometrical methods. Abelian varieties and
cyclic coverings of abelian varieties, very heavily studied by algebraic geometers,
enjoy certain algebraic properties which can then be translated into differential
equations and their Laurent solutions. Among the results presented in this paper,
there is an explicit calculation of invariants for Hamiltonian systems which cut out
an open set in an abelian variety or cyclic coverings of abelian varieties, and various
Riemann surfaces related to these systems are given explicitly. The integrable
dynamical systems presented here are interesting problems, particular to experts
of abelian varieties who may want to see explicit examples of a correspondence
for varieties defined by different Riemann surfaces.

2. A five-dimensional algebraic completely integrable system and abel-
ian surface

Consider the following system of five differential equations in the five unknowns
z1, . . . , z5:

ż1 = 2z4,

ż2 = z3,

ż3 = z2(3z1 + 8z2
2), (1)

ż4 = z2
1 + 4z1z

2
2 + z5,

ż5 = 2z1z4 + 4z2
2z4 − 2z1z2z3,

where the dot indicates the differentiation with respect to time variable t. The
following three quartics are constants of motion for this system

F1 =
1

2
z5 − z1z

2
2 +

1

2
z2
3 −

1

4
z2
1 − 2z4

2 ,

F2 = z2
5 − z2

1z5 + 4z1z2z3z4 − z2
1z

2
3 +

1

4
z4
1 − 4z2

2z
2
4 , (2)

F3 = z1z5 + z2
1z

2
2 − z2

4 .

This new system is completely integrable and the Hamiltonian structure is defined
by the Poisson bracket

{F,H} =

〈
∂F

∂z
, J
∂H

∂z

〉
=

5∑
k,l=1

Jkl
∂F

∂zk

∂H

∂zl

,

where ∂H
∂z

= ( ∂H
∂z1
, ∂H

∂z2
, ∂H

∂z3
, ∂H

∂z4
, ∂H

∂z5
)>, and

J =


0 0 0 2z1 4z4

0 0 1 0 0
0 −1 0 0 −4z1z2

−2z1 0 0 0 2z5 − 8z1z
2
2

−4z4 0 4z1z2 −2z5 + 8z1z
2
2 0

 ,
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is a skew-symmetric matrix for which the corresponding Poisson bracket satisfies
the Jacobi identities. The system (1) can be written as

ż = J
∂H

∂z
, z = (z1, z2, z3, z4, z5)

>,

where H = F1. The second flow commuting with the first is regulated by the
equations

ż = J
∂F2

∂z
, z = (z1, z2, z3, z4, z5)

>,

and is written explicitly as

ż1 = −16z1z
2
2z4 + 8z2

1z2z3 + 8z4z5 − 4z4z
2
1 ,

ż2 = 4z1z2z4 − 2z2
1z3,

ż3 = 8z2z
2
4 − 4z4z1z3 + 4z1z2z5 − 2z3

1z2,

ż4 = 2z5z
2
1 − 8z1z2z3z4 + 4z2

1z
2
3 − 2z4

1 + 4z2
5 + 8z1z

2
2z5 − 4z3

1z
2
2 ,

ż5 = 8z4z5z1 − 16z2z3z
2
4 + 8z4z1z

2
3 − 4z4z

3
1 − 8z2

1z
2
2z4 + 4z3

1z2z3

+16z5z
2
2z4 − 8z2z5z1z3 + 32z1z

4
2z4 − 16z2

1z
3
2z3.

These vector fields are in involution: {F1, F2} = 〈∂F1

∂z
, J ∂F2

∂z
〉 = 0, and the remain-

ing one is casimir: J ∂F3

∂z
= 0. The invariant variety A defined by

A =
2⋂

k=1

{z : Fk(z) = ck} ⊂ C5, (3)

is a smooth affine surface for generic values of (c1, c2, c3) ∈ C3. So, the question
I address is how does one find the compactification of A into an abelian surface?
The idea of the direct proof we shall give here is closely related to the geometric
spirit of the (real) Arnold-Liouville theorem [1, 2, 11]. Namely, a compact com-
plex n-dimensional variety on which there exist n holomorphic commuting vector
fields which are independent at every point is analytically isomorphic to an n-
dimensional complex torus Cn/Lattice and the complex flows generated by the
vector fields are straight lines on this complex torus. Now, the main problem
will be to complete A (3) into a non-singular compact complex algebraic variety

Ã = A∪D in such a way that the vector fields XF1 and XF2 generated respectively
by F1 and F2, extend holomorphically along a divisor D and remain independent
there. If this is possible, Ã is an algebraic complex torus (an abelian variety)
and the coordinates z1, . . . , z5 restricted to A are abelian functions. A naive guess
would be to take the natural compactification A of A by projectivizing the equa-
tions: A =

⋂3
k=1{Fk(Z) = ckZ

4
0} ⊂ P5. Indeed, this can never work for a general

reason: an abelian variety Ã of dimension bigger or equal than two is never a
complete intersection, that is it can never be described in some projective space
Pn by n-dim Ã global polynomial homogeneous equations. In other words, if A is
to be the affine part of an abelian surface, A must have a singularity somewhere
along the locus at infinity A∩{Z0 = 0}. In fact, we shall show that the existence
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of meromorphic solutions to the differential equations (1) depending on 4 free
parameters can be used to manufacture the tori, without ever going through the
delicate procedure of blowing up and down. Information about the tori can then
be gathered from the divisor.

Proposition 2.1. The system (1) possesses Laurent series solutions which de-
pend on 4 free parameters: α, β, γ and θ. These meromorphic solutions restricted
to the surface A(3) are parameterized by two copies C−1 and C1 of the same Rie-
mann surface (5) of genus 7.

Proof. The first fact to observe is that if the system is to have Laurent solutions
depending on 4 free parameters, the Laurent decomposition of such asymptotic
solutions must have the following form

z1 =
1

t
(z

(0)
1 + z

(1)
1 t+ z

(2)
1 t2 + z

(3)
1 t3 + z

(4)
1 t4 + · · · ),

z2 =
1

t
(z

(0)
2 + z

(1)
2 t+ z

(2)
2 t2 + z

(3)
2 t3 + z

(4)
2 t4 + · · · ),

z3 =
1

t2
(−z(0)

2 + z
(2)
2 t2 + 2z

(3)
2 t3 + 3z

(4)
2 t4 + · · · ),

z4 =
1

2t2
(−z(0)

1 + z
(2)
1 t2 + 2z

(3t)
1 t3 + 3z

(4)
1 t4 + · · · ),

z5 =
1

t3
(z

(0)
5 + z

(1)
5 t+ z

(2)
5 t2 + z

(3)
5 t3 + z

(4)
5 t4 + · · · ).

Putting these expansions into

z̈1 = 2z5 + 2z2
1 + 8z1z

2
2 ,

z̈2 = 3z1z2 + 8z3
2 ,

ż5 = z1ż1 + 2z2
2 ż1 − 2z1z2ż2,

deduced from (1), solving inductively for the z
(j)
k (k = 1, 2, 5), one finds at the 0th

step (resp. 2th step) a free parameter α (resp. β) and the two remaining ones γ, θ
at the 4th step. More precisely, we have

z1 =
1

t
α− 1

2
α2 + βt− 1

16
α

(
α3 + 4β

)
t2 + γt3 + · · · ,

z2 =
1

2t
ε− 1

4
εα +

1

8
εα2t− 1

32
ε
(
−α3 + 12β

)
t2 + θt3 + · · · ,

z3 = − 1

2t2
ε+

1

8
εα2 − 1

16
ε
(
−α3 + 12β

)
t+ 3θt2 + · · · , (4)

z4 = − 1

2t2
α+

1

2
β − 1

16
α

(
α3 + 4β

)
t+

3

2
γt2 + · · · ,

z5 =
1

2t2
α2 − 1

4t

(
α3 + 4β

)
+

1

4
α

(
α3 + 2β

)
−

(
α2β − 2γ + 4εθα

)
t+ · · · ,

with ε = ±1. Using the majorant method, we can show that the formal Laurent
series solutions are convergent. Substituting the solutions (4) into F1 = c1, F2 = c2
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and F3 = c3, and equating the t0-terms yields

F1 =
7

64
α4 − 1

8
αβ − 5

2
εθ = c1,

F2 =
1

16

(
4β − α3

) (
4α2β − α5 + 64εθα− 32γ

)
= c2,

F3 = − 1

32
α6 − β2 − 1

4
α3β − 3εθα2 + 4αγ = c3.

Eliminating γ and θ from these equations, leads to an equation connecting the
two remaining parameters α and β:

C : ∆(α, β) = 0, (5)

where
∆(α, β) ≡ 64β3 − 16α3β2 − 4

(
α6 − 32α2c1 − 16c3

)
β

+α
(
32c2 − 32α4c1 + α8 − 16α2c3

)
.

The Laurent solutions restricted to the surface A(3) are thus parameterized by
two copies C−1 and C1 of the same Riemann surface C(5). We now compute the
genus of C. We have

∆(α, β) = 64β3 − 16α3β2 − 4α6β − α9 + lower order terms,

=
3∏

j=1

(β + ajα
3) + lower order terms.

Consider ∆ as a cover with regard to α. In a neighbourhood of α = ∞, we have
β = −ajα

3 + · · · , and

(α)∞ = −P −Q−R, (β)∞ = −3P − 3Q− 3R.

Put t = 1
α
, then

∆(α, β) =
1

t9
(64t9β3 − 16t6ββ2 − 4t3β − 97) + · · · ,

which suggests the following change of charts (α, β) 7−→ (w = t3β, t = 1
α
). Note

that the function
∂∆

∂β
= 192

w2

t6
− 32

w

t6
− 4

t6
+ · · · ,

is meromorphic on C. Then #zeroes of ∂∆
∂β

= #poles of ∂∆
∂β

, and

(
∂∆

∂β
)P = −6P, (

∂∆

∂β
)Q = −6Q, (

∂∆

∂β
)R = −6R,

(
∂∆

∂β
)∞ = −6(P +Q+R).
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Therefore, the number of zeroes of ∂∆
∂β

in the affine part C\{P,Q,R} is 18. Ac-
cording to the Riemann-Hurwitz formula, the genus of the Riemann surface C is
7, which establishes the proposition.

In order to embed C into some projective space, one of the key underlying princi-
ples used is the Kodaira embedding theorem (see Appendix A), which states that
a smooth complex manifold can be smoothly embedded into projective space PN

with the set of functions having a pole of order k along positive divisor on the
manifold, provided k is large enough; fortunately, for abelian varieties, k need not
be larger than three according to Lefschetz. These functions are easily constructed
from the Laurent solutions (4) by looking for polynomials in the phase variables
which in the expansions have at most a k-fold pole. The nature of the expansions
and some algebraic properties of abelian varieties provide a recipe for when to ter-
minate our search for such functions, thus making the procedure implementable.
Precisely, we wish to find a set of polynomial functions {f0, . . . , fN}, of increasing
degree in the original variables z1, . . . , z5 having the property that the embedding
D of C1 + C−1 into PN via those functions satisfies the relation (see Appendix A
(16)): geometric genus (D) ≡ g(D) = N + 2. A this point, it may be not so clear
why D must really live on an abelian surface. Let us say, for the moment, that
the equations of the divisor D (i.e., the place where the solutions blow up), as a

Riemann surface traced on the abelian surface Ã (to be constructed in Proposi-
tion 2.3), must be understood as relations connecting the free parameters as they
appear firstly in the expansions (4). In the present situation, this means that (5)
must be understood as relations connecting α and β. Let

L(r) =


polynomials f = f(z, . . . , z5)
of degree ≤ r, such that
f(z(t)) = t−1(z(0) + · · · ),
with z(0) 6= 0 on D
and with z(t) as in (4)

 /[Fk = ck, k = 1, 2, 3],

and let (f0, f1, . . . , fNr) be a basis of L(r). We look for r such that :

g(D(r)) = Nr + 2, D(r) ⊂ PNr .

We shall show (Proposition 2.2) that it is unnecessary to go beyond r = 4.

Lemma 2.1. The spaces L(r), nested according to weighted degree, are generated
as follows

L(1) = {f0, f1, f2},
L(2) = L(1) ⊕ {f3, f4, f5, f6},
L(3) = L(2) ⊕ {f7, f8, f9, f10},
L(4) = L(3) ⊕ {f12, f13, f14, f15}, (6)

where
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f0 = 1,

f1 = z1 =
1

t
α+ · · · ,

f2 = z2 =
1

2t
ε+ · · · ,

f3 = 2z5 − z2
1 = −1

2

4β − α3

t
+ · · · ,

f4 = z3 + 2εz2
2 = − 1

2t
εα + · · · ,

f5 = z4 + εz1z2 = − 1

2t
α2 + · · · ,

f6 = [f1, f2] =
1

4
ε
4β − α3

t
+ · · · ,

f7 = f1A =
1

2t
α3 + · · · ,

f8 = f2A =
1

4t
εα2 + · · · ,

f9 = z4B =
1

8t
α3

(
−α3 + 4β

)
+ · · · ,

f10 = z5B = − 1

8t
α4

(
−α3 + 4β

)
+ · · · ,

f11 = f5A = − 1

4t
α4 + · · · ,

f12 = f1f2B = − 1

8t
α3ε

(
−α3 + 4β

)
+ · · · ,

f13 = f4f5 + [f1, f4] =
3

8
αε

4β − α3

t
+ · · · ,

f14 = [f1, f3] + 2ε [f1, f6] =
1

2
α3 4β − α3

t
+ · · · ,

f15 = f3 − 2z5 + 4f 2
4 = −α

3

t
+ · · · ,

with [sj, sk] = ṡjsk − sj ṡk, the wronskien of sk and sj, A = f1 + 2εf4 and B =
f3 + 2εf6.

Proof. The proof of this lemma is straightforward and can be done by inspection
of the expansions (4).

Proposition 2.2. L(4) provides an embedding of D(4) into projective space P15

and D(4) has genus 17.

Proof. It turns out that neither L(1), nor L(2), nor L(3), yield a Riemann surface
of the right genus; in fact g(D(r)) 6= dimL(r) + 1, r = 1, 2, 3. For instance, the
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embedding into P2 via L(1) does not separate the sheets, so we proceed to L(2)

and the corresponding embedding into P6 is unacceptable since g(D(2)) − 2 > 6
and D(2) ⊂ P6 6= Pg−2, which contradicts the fact that Nr = g(D(2)) − 2. So we
proceed to L(3) and we consider the corresponding embedding into P10, according
to the functions (f0, . . . , f10). For finite values of α and β, dividing the vector
(f0, . . . , f10) by f2 and taking the limit t→ 0, to yield

[0 : 2εα : 1 : −ε(4β − α3) : −α : −εα2 :
1

2
(4β − α3) : εα3 :

1

2
α2 :

1

4
εα3(4β − α3) : −1

4
εα4(4β − α3)].

The point α = 0 requires special attention. Indeed near α = 0, the param-
eter β behaves as follows: β ∼ 0, i

√
c3,−i

√
c3. Thus near (α, β) = (0, 0),

the corresponding point is mapped into the point [0 : 0 : 1 : 0 : 0 : 0 :
0 : 0 : 0 : 0 : 0] in P10 which is independent of ε = ±1, whereas near the
point (α, β) = (0, i

√
c3) (resp. (α, β) = (0,−i√c3)) leads to two different points:

[0 : 0 : 1 : −4εi
√
c3 : 0 : 0 : 2εi

√
c3 : 0 : 0 : 0 : 0] (resp. [0 : 0 : 1 : 4εi

√
c3 :

0 : 0 : −2εi
√
c3 : 0 : 0 : 0 : 0]), according to the sign of ε. The Riemann

surface (5) has three points covering α = ∞, at which β behaves as follows:
β ∼ −1279

216
α3, 1

432
α3

(
1333− 1295i

√
3
)
, 1

432
α3

(
1333 + 1295i

√
3
)
. Then by divid-

ing the vector (f0, . . . , f10) by f10, the corresponding point is mapped into the
point [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1] in P10. Thus, g(D(3)) − 2 > 10 and
D(2) ⊂ P10 6= Pg−2, which contradicts the fact that Nr = g(D(3)) − 2. Consider
now the embedding D(4) into P15 using the 16 functions f0, . . . , f15 of L(4)(6). It is
easily seen that these functions separate all points of the Riemann surface (except
perhaps for the points at α = ∞ and α = β = 0): The Riemann surfaces C1 and
C−1 are disjoint for finite values of α and β except for α = β = 0; dividing the
vector (f0, . . . , f15) by f2 and taking the limit t→ 0, to yield

[0 : 2εα : 1 : −ε(4β − α3) : −α : −εα2 :
1

2
(4β − α3) : εα3 :

1

2
α2 :

1

4
εα3(4β − α3) : −1

4
εα4(4β − α3) : −1

2
εα4 : −1

4
α3(4β − α3) :

3

4
α

(
4β − α3

)
: εα3

(
4β − α3

)
: −2εα3].

As before, the point α = 0 requires special attention and the parameter β behaves
as follows: β ∼ 0, i

√
c3,−i

√
c3. Thus near (α, β) = (0, 0), the corresponding point

is mapped into the point [0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0]
in P15 which is independent of ε = ±1, whereas near the point (α, β) = (0, i

√
c3)

(resp. (α, β) = (0,−i√c3)) leads to two different points : [0 : 0 : 1 : −4εi
√
c3 :

0 : 0 : 2εi
√
c3 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] (resp. [0 : 0 : 1 : 4εi

√
c3 : 0 : 0 :

−2εi
√
c3 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0]), according to the sign of ε. About the

point α = ∞, it is appropriate to divide by f10; then the corresponding point is
mapped into the point [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0],
in P15 which is independent of ε. Hence from formula (Appendix A,(19)), the
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divisor D(4) obtained in this way has genus 17 and D(4) ⊂ P15 = Pg−2, as desired
(i.e., satisfying the requirement Appendix A, (16)). This ends the proof of the
proposition.

Let L = L(4) and D = D(4). Next we wish to construct a surface strip around D
which will support the commuting vector fields. In fact, D has a good chance to
be very ample divisor on an abelian surface, still to be constructed.

Proposition 2.3. The variety A(3) generically is the affine part of an abelian

surface Ã. The reduced divisor at infinity Ã\A = C1 + C−1, consists of two copies
C1 and C−1 of the same genus 7 Riemann surface C(5). The system of differential
equations (1) is algebraic completely integrable and the corresponding flows evolve

on Ã.

Proof. We need to attach the affine part of the intersection of the three invariants
(2) so as to obtain a smooth compact connected surface in P15. To be precise,
the orbits of the vector field (1) running through D form a smooth surface Σ

near D such that Σ\A ⊆ Ã and the variety Ã = A ∪ Σ is smooth, compact and
connected. Indeed, let ψ(t, p) = {z(t) = (z1(t), . . . , z5(t)) : t ∈ C, 0 < |t| < ε}, be
the orbit of the vector field (1) going through the point p ∈ A. Let Σp ⊂ P15 be
the surface element formed by the divisor D and the orbits going through p, and
set Σ ≡ ∪p∈DΣp. Consider the Riemann surface D′ = H ∩ Σ where H ⊂ P15 is a
hyperplane transversal to the direction of the flow. If D′ is smooth, then using the
implicit function theorem the surface Σ is smooth. But if D′ is singular at 0, then
Σ would be singular along the trajectory (t-axis) which goes immediately into the
affine part A. Hence, A would be singular which is a contradiction because A is the
fibre of a morphism from C5 to C3 and so smooth for almost all the three constants
of the motion ck. Next, let A be the projective closure of A into P5, let Z = [Z0 :
Z1 : . . . : Z5] ∈ P5 and let I = A ∩ {Z0 = 0} be the locus at infinity. Consider
the map A ⊆ P5 → P15, Z 7→ f(Z), where f = (f0, f1, . . . , f15) ∈ L(D) and let

Ã = f(A). In a neighbourhood V (p) ⊆ P15 of p, we have Σp = Ã and Σp\D ⊆ A.

Otherwise there would exist an element of surface Σ′
p ⊆ Ã such that Σp∩Σ′

p = (t-
axis), orbit ψ(t, p) = (t-axis)\ p ⊆ A, and hence A would be singular along the t-
axis which is impossible. Since the variety A∩{Z0 6= 0} is irreducible and since the
generic hyperplane sectionHgen. of A is also irreducible, all hyperplane sections are
connected and hence I is also connected. Now, consider the graph Γf ⊆ P5×P15 of
the map f , which is irreducible together with A. It follows from the irreducibility
of I that a generic hyperplane section Γf ∩ {Hgen. × P15} is irreducible, hence
the special hyperplane section Γf ∩ {{Z0 = 0} × P15} is connected and therefore
the projection map projP15{Γf ∩ {{Z0 = 0} × P15}} = f(I) ≡ D, is connected.

Hence, the variety A ∪ Σ = Ã is compact, connected and embeds smoothly into
P15 via f . We wish to show that Ã is an abelian surface equipped with two
everywhere independent commuting vector fields. For doing that, let φτ1 and φτ2

be the flows corresponding to vector fields XF1 and XF2 . The latter are generated
respectively by F1 and F2. For p ∈ D and for small ε > 0, φτ1(p),∀τ1, 0 < |τ1| < ε,

is well defined and φτ1(p) ∈ Ã\A. Then we may define φτ2 on Ã by φτ2(q) =
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φ−τ1φτ2φτ1(q), q ∈ U(p) = φ−τ1(U(φτ1(p))), where U(p) is a neighbourhood of p.
By commutativity one can see that φτ2 is independent of τ1; φ

−τ1−ε1φτ2φτ1+ε1(q) =
φ−τ1φ−ε1φτ2φτ1φε1 = φ−τ1φτ2φτ1(q). We affirm that φτ2(q) is holomorphic away
from D. This because φτ2φτ1(q) is holomorphic away from D and that φτ1 is
holomorphic in U(p) and maps bi-holomorphically U(p) onto U(φτ1(p)). Now,
since the flows φτ1 and φτ2 are holomorphic and independent on D, we can show
along the same lines as in the Arnold-Liouville theorem [1,2,11] that Ã is a complex

torus C2/lattice and so in particular Ã is a Kähler variety. And that will be done,

by considering the local diffeomorphism C2 → Ã, (τ1, τ2) 7→ φτ1φτ2(p), for a fixed
origin p ∈ A. The additive subgroup {(τ1, τ2) ∈ C2 : φτ1φτ2(p) = p} is a lattice of

C2, hence C2/lattice → Ã is a biholomorphic diffeomorphism and Ã is a Kähler
variety with Kähler metric given by dτ1 ⊗ dτ 1 + dτ2 ⊗ dτ 2. As mentioned in
appendix A, a compact complex Kähler variety having the required number as
(its dimension) of independent meromorphic functions is a projective variety. In

fact, here we have Ã ⊆ P15. Thus Ã is both a projective variety and a complex
torus C2/lattice and hence an abelian surface as a consequence of Chow theorem.
This completes the proof of the proposition.

Remark 2.1. Note that the reflection σ on the affine variety A amounts to the
flip σ : (z1, z2, z3, z4, z5) 7→ (z1,−z2, z3,−z4, z5), changing the direction of the
commuting vector fields. It can be extended to the (−Id)-involution about the

origin of C2 to the time flip (t1, t2) 7→ (−t1,−t2) on Ã, where t1 and t2 are
the time coordinates of each of the flows XF1 and XF2 . The involution σ acts
on the parameters of the Laurent solution (4) as follows σ : (t, α, β, γ, θ) 7−→
(−t,−α,−β,−γ, θ), interchanges the Riemann surfaces Cε and the linear space
L can be split into a direct sum of even and odd functions. Geometrically, this
involution interchanges C1 and C−1, i.e., C−1 = σC1.

Remark 2.2. Consider on Ã the holomorphic 1-forms dt1 and dt2 defined by
dti(XFj

) = δij, where XF1 and XF2 are the vector fields generated respectively by
F1 and F2. Taking the differentials of ζ = 1/z1 and ξ = z1/z2 viewed as functions
of t1 and t2, using the vector fields and the Laurent series (4) and solving linearly
for dt1 and dt2, we obtain the holomorphic differentials

ω1 = dt1|Cε =
1

4
(
∂ξ

∂t2
dζ − ∂ζ

∂t2
dξ)|Cε =

8

α (−4β + α3)
dα,

ω2 = dt2|Cε =
1

4
(
−∂ξ
∂t1

dζ − ∂ζ

∂t1
dξ)|Cε =

2

(−4β + α3)2dα,

with ∆ ≡ ∂ζ
∂t1

∂ξ
∂t2
− ∂ζ

∂t2

∂ξ
∂t1

. The zeroes of ω2 provide the points of tangency of the

vector field XF1 to Cε. We have ω1

ω2
= 4

α
(−4β + α3), and XF1 is tangent to Hε at

the point covering α = ∞.
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3. A four-dimensional generalized algebraic complete integrable system
and cyclic covering of abelian surface

Consider the case F3 = 0, and the following change of variables

z1 = q2
1, z2 = q2, z3 = p2, z4 = p1q1, z5 = p2

1 − q2
1q

2
2.

Substituting this into the constants of motion F1, F2, F3 leads obviously to the
relations

H1 =
1

2
p2

1 −
3

2
q2
1q

2
2 +

1

2
p2

2 −
1

4
q4
1 − 2q4

2, (7)

H2 = p4
1 − 6q2

1q
2
2p

2
1 + q4

1q
4
2 − q4

1p
2
1 + q6

1q
2
2 + 4q3

1q2p1p2 − q4
1p

2
2 +

1

4
q8
1,

whereas the last constant leads to an identity. Using the differential equations
(1) combined with the transformation above leads to the system of differential
equations

q̇1 = p1,

q̇2 = p2, (8)

ṗ1 = q1
(
q2
1 + 3q2

2

)
,

ṗ1 = q2
(
3q2

1 + 8q2
2

)
.

The last equation (1) for z5 leads to an identity. Thus, we obtain the potential
constructed by Ramani, Dorozzi and Grammaticos [16,5]. Evidently, the functions
H1 and H2 commute :

{H1, H2} =
2∑

k=1

(
∂H1

∂pk

∂H2

∂qk
− ∂H1

∂qk

∂H2

∂pk

)
= 0.

The system (8) is weight-homogeneous1 with q1, q2 having weight 1 and p1, p2

weight 2, so that H1 and H2 have weight 4 and 8 respectively. When one examines
all possible singularities, one finds that it is possible for the variable q1 to contain
square root terms of the type t1/2, which are strictly not allowed by the Painlevé
test. However, these terms are trivially removed by introducing the variables
z1, . . . , z5 which restores the Painlevé property to the system. Let B be the affine
variety defined by

B =
2⋂

k=1

{z ∈ C4 : Hk(z) = bk}, (9)

where (b1, b2) ∈ C2.

Proposition 3.1. The system (8) admits Laurent solutions in t1/2, depending on
3 free parameters: u, v and w. These solutions restricted to the surface B(9) are
parameterized by two copies −1 and −−1 of the same Riemann surface of genus
16.

1Recall that a system ż = f(z) is weight-homogeneous with a weight νk going with each
variable zk if fk(λνiz1, . . . , λ

νnzn) = λνk+1fk(z1, . . . , zn), for all λ ∈ C.
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Proof. The system (8) possesses 3-dimensional family of Laurent solutions (princi-
pal balances) depending on three free parameters u, v and w. There are precisely
two such families, labeled by ε = ±1, and they are explicitly given as follows

q1 =
1√
t
(u− 1

4
u3t+ vt2 − 5

128
u7t3 +

1

8
u(

3

4
u3v − 7

256
u8 + 3εw)t4 + · · · ),

q2 =
1

t
(
1

2
ε− 1

4
εu2t+

1

8
εu4t2 +

1

4
εu(

1

32
u5 − 3v)t3 + wt4 + · · · ), (10)

p1 =
1

2t
√
t
(−u− 1

4
u3t+ 3vt2 − 25

128
t3u7 +

7

8
u(

3

4
u3v − 7

256
u8 + 3εw)t4 + · · · ),

p2 =
1

t2
(−1

2
ε+

1

8
εu4t2 +

1

2
εu(

1

32
u5 − 3v)t3 + 3wt4 + · · · ).

These formal series solutions are convergent as a consequence of the majorant
method. By substituting these series in the constants of the motion H1 = b1
and H2 = b2, one eliminates the parameter w linearly, leading to an equation
connecting the two remaining parameters u and v :

Γ :
65

4
uv3 +

93

64
u6v2 +

3

8192

(
−9829u8 + 26112H1

)
u3v (11)

−10299

65536
u16 − 123

256
H1u

8 +H2 +
15362 98731

52
= 0.

According to Hurwitz’ formula, this defines a Riemann surface Γ of genus 16. The
Laurent solutions restricted to the surface B(9) are thus parameterized by two
copies Γ−1 and Γ1 of the same Riemann surface Γ. This ends the proof of the
proposition.

Remark 3.1. The asymptotic solution (10) can be read off from (4) and the
change of variables: q1 =

√
z1, q2 = z2, p1 = z4/q1, p2 = z3. The function z1 has a

simple pole along the divisor C1 + C−1 and a double zero along a Riemann surface
of genus 7 defining a double cover of Ã ramified along C1 + C−1.

Applying the method explained in Piovan [15], we have the

Proposition 3.2. The invariant surface B(9) can be completed as a cyclic double

cover B of the abelian surface Ã, ramified along the divisor C1 + C−1. The system
(8) is algebraic complete integrable in the generalized sense. Moreover, B is smooth
except at the point lying over the singularity (of type A3) of C1 + C−1 and the

resolution B̃ of B is a surface of general type with invariants: X (B̃) = 1 and

pg(B̃) = 2.

Proof. The morphism ϕ : B −→ A, (q1, q2, p1, p2) 7−→ (z1, z2, z3, z4, z5), maps
the vector field (8) into an algebraic completely integrable system (1) in five
unknowns and the affine variety B (9) onto the affine part A (3) of an abelian
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variety Ã with Ã\A = C1 + C−1. Observe that ϕ is an unramified cover. The
Riemann surface Γ(11) plays an important role in the construction of a compact-
ification B of B. Let us denote by G a cyclic group of two elements {−1, 1} on
V j

ε = U j
ε × {τ ∈ C : 0 < |τ | < δ}, where τ = t1/2 and U j

ε is an affine chart of
Γε for which the Laurent solutions (10) are defined. The action of G is defined
by (−1) ◦ (u, v, τ) = (−u,−v,−τ) and is without fixed points in V j

ε . So we can
identify the quotient V j

ε /G with the image of the smooth map hj
ε : V j

ε → B
defined by the expansions (10). We have (−1, 1).(u, v, τ) = (−u,−v, τ) and
(1,−1).(u, v, τ) = (u, v,−τ), i.e., G×G acts separately on each coordinate. Thus,
identifying V j

ε /G
2 with the image of ϕ ◦hj

ε in A. Note that Bj
ε = V j

ε /G is smooth
(except for a finite number of points) and the coherence of the Bj

ε follows from the
coherence of V j

ε and the action of G. Now by taking B and by gluing on various

varieties Bj
ε\{some points}, we obtain a smooth complex manifold B̂ which is a

double cover of the abelian variety Ã (constructed in Proposition 2.3) ramified
along C1 + C−1, and therefore can be completed to an algebraic cyclic cover of
Ã. To see what happens to the missing points, we must investigate the image of
Γ×{0} in ∪Bj

ε . The quotient Γ×{0}/G is birationally equivalent to the Riemann
surface Υ of genus 7:

Υ :
65

4
y3 +

93

64
x3y2 +

3

8192

(
−9829x4 + 26112b1

)
x2y

+x

(
−10299

65536
x8 − 123

256
b1x

4 + b2 +
15362 98731

52

)
= 0,

where y = uv, x = u2. The Riemann surface Υ is birationally equivalent to C.
The only points of Υ fixed under (u, v) 7→ (−u,−v) are the points at ∞, which

correspond to the ramification points of the map Γ × {0} 2−1→ Υ : (u, v) 7→ (x, y)
and coincide with the points at ∞ of the Riemann surface C. Then the variety
B̂ constructed above is birationally equivalent to the compactification B of the
generic invariant surface B. So B is a cyclic double cover of the abelian surface Ã
ramified along the divisor C1+C−1, where C1 and C−1 have two points in common at
which they are tangent to each other. It follows that the system (8) is algebraic
completely integrable in the generalized sense. Moreover, B is smooth except
at the point lying over the singularity (of type A3) of C1 + C−1. In term of
an appropriate local holomorphic coordinate system (X, Y, Z), the local analytic

equation about this singularity isX4+Y 2+Z2 = 0. Now, let B̃ be the resolution of
singularities of B, X (B̃) be the Euler characteristic of B̃ and pg(B̃) the geometric

genus of B̃. Then B̃ is a surface of general type with invariants: X (B̃) = 1 and

pg(B̃) = 2. This concludes the proof of the proposition.

A. Appendix

In this appendix we recall some results about abelian surfaces which will be used
in this paper (details can be found in [6,7]), as well as the basic techniques to study
two-dimensional algebraic completely integrable systems (see Appendix B). Let
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M = C/Λ be an n-dimensional abelian variety where Λ is the lattice generated by
the 2n columns λ1, . . . , λ2n of the n× 2n period matrix Ω and let D be a divisor
on M . Define L(D) = {f meromorphic on M : (f) ≥ −D}, i.e., for D =

∑
kjDj

a function f ∈ L(D) has at worst a kj-fold pole along Dj. The divisor D is called
ample when a basis (f0, . . . , fN) of L(kD) embeds M smoothly into PN for some k,
via the map M → PN , p 7→ [1 : f1(p) : · · · : fN(p)], then kD is called very ample.
It is known that every positive divisor D on an irreducible abelian variety is ample
and thus some multiple of D embeds M into PN . By a theorem of Lefschetz, any
k ≥ 3 will work. Moreover, there exists a complex basis of Cn such that the lattice
expressed in that basis is generated by the columns of the n× 2n period matrix δ1 0 |

. . . | Z
0 δn |

 ,

with Z> = Z, ImZ > 0, δj ∈ N∗ and δj|δj+1. The integers δj which provide the
so-called polarization of the abelian variety M are then related to the divisor as
follows:

dimL(D) = δ1 . . . δn. (12)

In the case of a 2-dimensional abelian varieties (surfaces), even more can be stated:
the geometric genus g of a positive divisor D (containing possibly one or several
curves) on a surface M is given by the adjunction formula

g(D) =
KM .D +D.D

2
+ 1, (13)

where KM is the canonical divisor on M , i.e., the zero-locus of a holomorphic
2-form, D.D denote the number of intersection points of D with a + D (where
a+D is a small translation by a of D on M), whereas the Riemann-Roch theorem
for line bundles on a surface tells you that

χ(D) = pa(M) + 1 +
1

2
(D.D −DKM), (14)

where pa (M) is the arithmetic genus of M and χ(D) the Euler characteristic of
D. To study abelian surfaces using Riemann surfaces on these surfaces, we recall
that

χ(D) = dimH0(M,OM(D))− dimH1(M,OM(D)),

= dimL(D)− dimH1(M,Ω2(D ⊗K∗
M)), (Kodaira-Serre duality),

= dimL(D), (Kodaira vanishing theorem), (15)

whenever D ⊗ K∗
M defines a positive line bundle. However for abelian surfaces,

KM is trivial and pa(M) = −1; therefore combining relations (12), (13), (14) and
(15),

χ (D) = dimL(D) =
D.D

2
= g (D)− 1 = δ1δ2. (16)
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A divisorD is called projectively normal, when the natural map L(D)⊗k → L(kD),
is surjective, i.e., every function of L(kD) can be written as a linear combination
of k-fold products of functions of L(D). Not every very ample divisor D is pro-
jectively normal but if D is linearly equivalent to kD0 for k ≥ 3 for some divisor
D0, then D is projectively normal [14,8].
Now consider the exact sheaf sequence

0 −→ OC
π∗−→ OC̃ −→ X −→ 0,

where C is a singular connected Riemann surface, C̃ =
∑
Cj the corresponding set

of smooth Riemann surfaces after desingularization and π : C̃ → C the projection.
The exactness of the sheaf sequence shows that the Euler characteristic

X (O) = dimH0(O)− dimH1(O), (17)

satisfies
X (OC)−X (OC̃) + X (X) = 0, (18)

where X (X) only accounts for the singular points p of C; X (Xp) is the dimension
of the set of holomorphic functions on the different branches around p taken
separately, modulo the holomorphic functions on the Riemann surface C near
that singular point. Consider the case of a planar singularity (in this paper, we
will be concerned by a tacnode for which X (X) = 2, as well), i.e., the tangents
to the branches lie in a plane. If fj(x, y) = 0 denotes the jth branch of C running
through p with local parameter sj, then

X (Xp) = dim ΠjC[[sj]]/
C[[x, y]]

Πjfj(x, y)
.

So using (15) and Serre duality, we obtain X (OC) = 1 − g(C) and X (OC̃) =
n−

∑n
j=1 g(Cj). Also, replacing in the formula (18), gives

g(C) =
n∑

j=1

g(Cj) + X (X) + 1− n. (19)

Finally, recall that a Kähler variety is a variety with a Kähler metric, i.e., a
hermitian metric whose associated differential 2-form of type (1, 1) is closed. The
complex torus C2/lattice with the euclidean metric

∑
dzi⊗dzi is a Kähler variety

and any compact complex variety that can be embedded in projective space is
also a Kähler variety. Now, a compact complex Kähler variety having as many
independent meromorphic functions as its dimension is a projective variety [13].

B. Appendix

In this appendix we give some basic facts about integrable Hamiltonian systems.
Let M be a 2n-dimensional differentiable manifold and ω a closed non-degenerate
differential 2-form. The pair (M,ω) is called a symplectic manifold. Let H : M →
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R be a smooth function. A Hamiltonian system on (M,ω) with Hamiltonian H
can be written in the form

q̇1 =
∂H

∂p1

, . . . , q̇n =
∂H

∂pn

, ṗ1 = −∂H
∂q1

, . . . , ṗn = −∂H
∂qn

, (20)

where (q1, . . . , qn, p1, . . . , pn) are coordinates in M . Thus the Hamiltonian vector

field XH is defined by XH =
∑n

k=1

(
∂H
∂pk

∂
∂qk

− ∂H
∂qk

∂
∂pk

)
. If F is a smooth function

on the manifold M , the Poisson bracket {F,H} of F and H is defined by

XHF =
n∑

k=1

(
∂H

∂pk

∂F

∂qk
− ∂H

∂qk

∂F

∂pk

)
= {F,H} . (21)

A function F is an invariant (first integral) of the Hamiltonian system (20) if and
only if the Lie derivative of F with respect XH is identically zero. The functions
F and H are said to be in involution or to commute, if {F,H} = 0. Note that
equations (20) and (21) can be written in more compact form

ẋ = J
∂H

∂x
, x = (q1, . . . , qn, p1, . . . , pn)> ,

{F,H} =

〈
∂F

∂x
, J
∂H

∂x

〉
=

n∑
k,l=1

Jkl
∂F

∂xk

∂H

∂xl

,

with J =

[
O I
−I O

]
, a skew-symmetric matrix where I is the n× n unit matrix

and O the n × n zero matrix. A Hamiltonian system is completely integrable in
the sense of Liouville if there exist n invariants H1 = H,H2, . . . , Hn in involution
(i.e., such that the associated Poisson brackets {Hk, Hl} all vanish) with linearly
independent gradients (i.e., dH1 ∧ · · · ∧ dHn 6= 0). For generic (c1, . . . , cn) the
level set V = {H1 = c1, . . . , Hn = cn} will be an n-manifold, and since XHk

Hl =
{Hk, Hl} = 0, the integral curves of eachXHk

will lie in V and the vector fieldsXHk

span the tangent space of V . By a theorem of Arnold [2,11], if V is compact and
connected, it is diffeomorphic to an n-dimensional torus Rn/Zn and each vector
field will define a linear flow there. To be precise, in some open neighbourhood of
the torus one can introduce regular symplectic coordinates s1, . . . , sn, ϕ1, . . . , ϕn in
which ω takes the canonical form ω =

∑n
k=1 dsk∧dϕk. Here the functions sk (called

action-variables) give coordinates in the direction transverse to the torus and can
be expressed functionally in terms of the first integrals Hk. The functions ϕk

(called angle-variables) give standard angular coordinates on the torus, and every
vector fieldXHk

can be written in the form ϕ̇k = hk (s1, . . . , sn), that is, its integral
trajectories define a conditionally-periodic motion on the torus. Consequently, in
a neighbourhood of the torus the Hamiltonian vector field XHk

takes the following
form ṡk = 0, ϕ̇k = hk (s1, . . . , sn), and can be solved by quadratures.

Consider now Hamiltonian problems of the form

XH : ẋ = J
∂H

∂x
, x ∈ Rm, (22)



112 A. Lesfari: Abelian Varieties, Surfaces of General Type and . . .

where H is the Hamiltonian and J = J(x) is a skew-symmetric matrix with
polynomial entries in x, for which the corresponding Poisson bracket {Hi, Hj} =

〈∂Hi

∂x
, J

∂Hj

∂x
〉, satisfies the Jacobi identities. The system (22) with polynomial right

hand side will be called algebraic completely integrable (a.c.i.) in the sense of
Adler-van Moerbeke [1] when:

i) The system possesses n+ k independent polynomial invariants H1, . . . , Hn+k of
which k lead to zero vector fields J ∂Hn+i

∂x
(x) = 0, 1 ≤ i ≤ k, the n remaining

ones are in involution (i.e., {Hi, Hj} = 0) and m = 2n + k. For most values

of ci ∈ R, the invariant varieties
n+k⋂
i=1

{x ∈ Rm : Hi = ci} are assumed compact

and connected. Then, according to the Arnold-Liouville theorem, there exists a
diffeomorphism

n+k⋂
i=1

{x ∈ Rm : Hi = ci} → Rn/Lattice,

and the solutions of the system (22) are straight lines motions on these tori.

ii) The invariant varieties, thought of as affine varieties in Cm can be completed
into complex algebraic tori, i.e.,

n+k⋂
i=1

{Hi = ci, x ∈ Cm} ∪ D = Cn/Lattice,

where Cn/Lattice is a complex algebraic torus (i.e., abelian variety) and D a
divisor. Algebraic means that the torus can be defined as an intersection
M⋂
i=1

{Pi(X0, . . . , XN) = 0} involving a large number of homogeneous polynomials

Pi. In the natural coordinates (t1, . . . , tn) of Cn/Lattice coming from Cn, the
functions xi = xi(t1, . . . , tn) are meromorphic and (22) defines straight line mo-
tion on Cn/Lattice. Condition i) means, in particular, there is an algebraic map
(x1(t), . . . , xm(t)) 7→ (µ1(t), . . . , µn(t)) making the following sums linear in t:

n∑
i=1

∫ µi(t)

µi(0)

ωj = djt , 1 ≤ j ≤ n, dj ∈ C,

where ω1, . . . , ωn denote holomorphic differentials on some algebraic curves.
Adler and van Moerbeke [1] have shown that the existence of a coherent set of
Laurent solutions :

xi =
∞∑

j=0

x
(j)
i tj−ki , ki ∈ Z, some ki > 0,

depending on dim(phase space) − 1 = m − 1 free parameters is necessary and
sufficient for a Hamiltonian system with the right number of constants of motion
to be a.c.i. So, if the Hamiltonian flow (22) is a.c.i., it means that the variables
xi are meromorphic on the torus Cn/Lattice and by compactness they must blow
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up along a codimension one subvariety (a divisor) D ⊂ Cn/Lattice. By the a.c.i.
definition, the flow (22) is a straight line motion in Cn/Lattice and thus it must
hit the divisor D in at least one place. Moreover through every point of D, there
is a straight line motion and therefore a Laurent expansion around that point
of intersection. Hence the differential equations must admit Laurent expansions
which depend on the n−1 parameters definingD and the n+k constants ci defining
the torus Cn/Lattice, the total count is therefore m− 1 = dim(phase space)− 1
parameters.
Next we assume that the divisor is very ample and in addition projectively normal.
Consider a point p ∈ D, a chart Uj around p on the torus and a function yj in L(D)
having a pole of maximal order at p. Then the vector (1/yj, y1/yj, . . . , yN/yj)
provides a good system of coordinates in Uj. Then taking the derivative with
regard to one of the flows

(
yi

yj

)̇ =
ẏiyj − yiẏj

y2
j

, 1 ≤ j ≤ N,

are finite on Uj as well. Therefore, since y2
j has a double pole along D, the

numerator must also have a double pole (at worst), i.e., ẏiyj − yiẏj ∈ L(2D).
Hence, when D is projectively normal, we have that

(
yi

yj

)̇ =
∑
k,l

ak,l(
yk

yj

)(
yl

yj

),

i.e., the ratios yi/yj form a closed system of coordinates under differentiation. Us-
ing the majorant method [1], we can show that the formal Laurent series solution
is convergent. At the bad points, the concept of projective normality plays an
important role: this enables one to show that yi/yj is a bona fide Taylor series
starting from every point in a neighbourhood of the point in question.
Some other integrable systems appear as coverings of algebraic completely inte-
grable systems. The manifolds invariant by the complex flows are coverings of
abelian varieties and these systems are called algebraic completely integrable in
the generalized sense.

References

[1] Adler, M.; van Moerbeke, P.: The complex geometry of the Kowalewski-
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